A new class of splitting 3-designs

被引:0
|
作者
Miao Liang
Beiliang Du
机构
[1] Suzhou Vocational University,Foundation Department
[2] Suzhou University,Department of Mathematics
来源
Designs, Codes and Cryptography | 2011年 / 60卷
关键词
Splitting ; -designs; Splitting authentication codes; Candelabra splitting ; -systems; 05B05; 94A62;
D O I
暂无
中图分类号
学科分类号
摘要
Splitting t-designs were first formulated by Huber in recent investigation of optimal (t − 1)-fold secure splitting authentication codes. In this paper, we investigate the construction and existence of splitting t-designs t-(v, u × k, 1) splitting designs and, show that there exists a 3-(v, 3 × 2, 1) splitting design if and only if v ≡ 2 (mod 8). As its application, we obtain a new infinite class of optimal 2-fold secure splitting authentication codes.
引用
收藏
页码:283 / 290
页数:7
相关论文
共 50 条
  • [31] 3-Designs from PSL(2, q)
    Cameron, P. J.
    Maimani, H. R.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    DISCRETE MATHEMATICS, 2006, 306 (23) : 3063 - 3073
  • [32] A construction for infinite families of Steiner 3-designs
    Mohácsy, H
    Ray-Chaudhuri, DK
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 94 (01) : 127 - 141
  • [34] A key predistribution scheme based on 3-designs
    Dong, Junwu
    Pei, Dingyi
    Wang, Xueli
    INFORMATION SECURITY AND CRYPTOLOGY, 2008, 4990 : 81 - +
  • [35] New 3-designs from Goethals codes over Z4
    Helleseth, T
    Rong, CM
    Yang, K
    DISCRETE MATHEMATICS, 2001, 226 (1-3) : 403 - 409
  • [36] New infinite families of 3-designs from algebraic curves over Fq
    Oh, Byeong-Kweon
    Oh, Jangheon
    Yu, Hoseog
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (04) : 1262 - 1269
  • [37] USING FINITE GEOMETRIES TO CONSTRUCT 3-PBIB(2) DESIGNS AND 3-DESIGNS
    YANG, BF
    CHINESE SCIENCE BULLETIN, 1992, 37 (07): : 611 - 612
  • [38] USING FINITE GEOMETRIES TO CONSTRUCT 3-PBIB(2) DESIGNS AND 3-DESIGNS
    阳本傅
    ChineseScienceBulletin, 1992, (07) : 611 - 612
  • [39] USING FINITE GEOMETRIES TO CONSTRUCT 3-PBIB(2) DESIGNS AND 3-DESIGNS
    YANG BENFU(Department of Mathematics
    Applied Mathematics:A Journal of Chinese Universities(Series B), 1994, (03) : 291 - 297
  • [40] Constructions of 3-resolvable nested 3-designs and 3-wise balanced designs
    Rudra, Sarita
    Banerjee, Shakti
    Kageyama, Sanpei
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 33 : 77 - 86