A finite embedding theorem for partial Steiner 3-designs

被引:1
|
作者
Dukes, Peter J. [1 ]
Feng, Tao [2 ]
Ling, Alan C. H. [3 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[3] Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA
关键词
Circle geometry; Steiner system; 3-Design; Embedding; TRIPLE-SYSTEMS; DESIGNS; CONSTRUCTION; PROOF;
D O I
10.1016/j.ffa.2014.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Steiner system S(t, k, n) is a k-uniform set system. on [n] for which every t-set is covered exactly once. More generally, a partial Steiner. system P(t, k, n) is a k-uniform set system on [n] where every t-set is covered at most once. Let q be a prime power.. Using circle geometries and field-based block spreading, we give an explicit embedding for any partial Steiner system P(3, q + 1, n) into a Steiner system S(3, q + 1, q(m) + 1) for some m = m(q, n). (C) 2014 Elsevier Inc. All rights reseived.
引用
收藏
页码:29 / 36
页数:8
相关论文
共 50 条
  • [41] NEW 3-DESIGNS OVER THE BINARY FIELD
    Braun, Michael
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2013, 6 (02): : 79 - 87
  • [42] ON THE SUPPORT SIZE OF 3-DESIGNS WITH REPEATED BLOCKS
    MAHMOODIAN, ES
    ARS COMBINATORIA, 1990, 30 : 13 - 22
  • [43] CONSTRUCTING 3-DESIGNS FROM SPREADS AND LINES
    BERARDI, L
    DISCRETE MATHEMATICS, 1989, 74 (03) : 331 - 332
  • [44] DOUBLE RESOLVABILITY OF SOME COMPLETE 3-DESIGNS
    DENNISTON, RH
    MANUSCRIPTA MATHEMATICA, 1974, 12 (02) : 105 - 112
  • [45] Descartes Circle Theorem, Steiner Porism, and Spherical Designs
    Schwartz, Richard Evan
    Tabachnikov, Serge
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (03): : 238 - 248
  • [46] Simple 3-designs with block size d
    Li, Weixia
    Shen, Hao
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 51 : 235 - 241
  • [47] Tricolore 3-designs in Type III codes
    Bonnecaze, A
    Solé, P
    Udaya, P
    DISCRETE MATHEMATICS, 2001, 241 (1-3) : 129 - 138
  • [48] Extendable Steiner designs from finite geometries
    Key, JD
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 56 (02) : 181 - 186
  • [49] Multiqubit Clifford groups are unitary 3-designs
    Zhu, Huangjun
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [50] 3-Designs from PSL(2, q)
    Cameron, P. J.
    Maimani, H. R.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    DISCRETE MATHEMATICS, 2006, 306 (23) : 3063 - 3073