A finite embedding theorem for partial Steiner 3-designs

被引:1
|
作者
Dukes, Peter J. [1 ]
Feng, Tao [2 ]
Ling, Alan C. H. [3 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[3] Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA
关键词
Circle geometry; Steiner system; 3-Design; Embedding; TRIPLE-SYSTEMS; DESIGNS; CONSTRUCTION; PROOF;
D O I
10.1016/j.ffa.2014.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Steiner system S(t, k, n) is a k-uniform set system. on [n] for which every t-set is covered exactly once. More generally, a partial Steiner. system P(t, k, n) is a k-uniform set system on [n] where every t-set is covered at most once. Let q be a prime power.. Using circle geometries and field-based block spreading, we give an explicit embedding for any partial Steiner system P(3, q + 1, n) into a Steiner system S(3, q + 1, q(m) + 1) for some m = m(q, n). (C) 2014 Elsevier Inc. All rights reseived.
引用
收藏
页码:29 / 36
页数:8
相关论文
共 50 条
  • [21] Constructions of Spherical 3-Designs
    Béla Bajnok
    Graphs and Combinatorics, 1998, 14 : 97 - 107
  • [22] A Construction of Spherical 3-Designs
    T. Miezaki
    Ukrainian Mathematical Journal, 2022, 74 : 160 - 165
  • [23] A Construction of Spherical 3-Designs
    Miezaki, T.
    UKRAINIAN MATHEMATICAL JOURNAL, 2022, 74 (01) : 160 - 165
  • [24] THE FUNDAMENTAL CONSTRUCTION FOR 3-DESIGNS
    HARTMAN, A
    DISCRETE MATHEMATICS, 1994, 124 (1-3) : 107 - 132
  • [25] Constructions of spherical 3-designs
    Bajnok, B
    GRAPHS AND COMBINATORICS, 1998, 14 (02) : 97 - 107
  • [26] A method of constructing 3-designs
    Raghavarao, D
    Zhou, B
    UTILITAS MATHEMATICA, 1997, 52 : 91 - 96
  • [27] EMBEDDING PARTIAL STEINER PENTAGON SYSTEMS
    ROBINSON, PW
    ARS COMBINATORIA, 1988, 25 : 5 - 15
  • [28] A large order asymptotic existence theorem for group divisible 3-designs with index one
    Mohacsy, Hedvig
    DISCRETE MATHEMATICS, 2012, 312 (18) : 2843 - 2848
  • [29] A new class of splitting 3-designs
    Liang, Miao
    Du, Beiliang
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 60 (03) : 283 - 290
  • [30] Ternary isodual codes and 3-designs
    Shi, Minjia
    Liu, Ruowen
    Crnkovic, Dean
    Sole, Patrick
    Svob, Andrea
    DESIGNS CODES AND CRYPTOGRAPHY, 2025,