ALGEBRAIC MULTIGRID FOR HIGH-ORDER HIERARCHICAL H(curl) FINITE ELEMENTS

被引:2
|
作者
Lai, James H. [1 ]
Olson, Luke N. [1 ]
机构
[1] Univ Illinois, Siebel Ctr Comp Sci, Urbana, IL 61801 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 05期
基金
美国国家科学基金会;
关键词
algebraic multigrid; high-order; curl; edge elements;
D O I
10.1137/100799095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classic multigrid methods are often not directly applicable to nonelliptic problems such as curl-type partial differential equations (PDEs). Curl-curl PDEs require specialized smoothers that are compatible with the gradient-like (near) null space. Moreover, recent developments have focused on replicating the grad-curl-div de Rham complex in a multilevel hierarchy through smoothed aggregation based algebraic multigrid. These approaches have been successful for Nedelec finite elements (i.e., H(curl) edge elements), but do not extend naturally to high-order representations. In this paper we consider hierarchical high-order Whitney elements for the curl-curl eddy current problem and devise a scalable multilevel approach. Our method generates a hierarchy similar to p-type multigrid, which results in a coarse level that is amenable to further coarsening through the established process of a multilevel complex. The natural hierarchy of the elements induces an effective interpolation operator and motivates the construction of a compatible gradient smoothing process. We detail the multilevel solver for a hierarchical H(curl) basis and present numerical results in support of the method.
引用
收藏
页码:2888 / 2902
页数:15
相关论文
共 50 条
  • [31] Matrix-free preconditioning for high-order H(curl) discretizations
    Barker, Andrew T.
    Kolev, Tzanio
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (02)
  • [32] Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra
    Bergot, Morgane
    Durufle, Marc
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (05) : 1372 - 1414
  • [33] UNIFIED GEOMETRIC MULTIGRID ALGORITHM FOR HYBRIDIZED HIGH-ORDER FINITE ELEMENT METHODS
    Wildey, Tim
    Muralikrishnan, Sriramkrishnan
    Tan Bui-Thanh
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : S172 - S195
  • [34] Subcell finite volume multigrid preconditioning for high-order discontinuous Galerkin methods
    Birken, Philipp
    Gassner, Gregor J.
    Versbach, Lea M.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2019, 33 (09) : 353 - 361
  • [35] High-order multigrid strategies for hybrid high-order discretizations of elliptic equations
    Di Pietro, Daniele A.
    Matalon, Pierre
    Mycek, Paul
    Ruede, Ulrich
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (01)
  • [36] LOW-ORDER PRECONDITIONING OF HIGH-ORDER TRIANGULAR FINITE ELEMENTS
    Chalmers, Noel
    Warburton, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06): : A4040 - A4059
  • [37] An algebraic multigrid method for finite element discretizations with edge elements
    Reitzinger, S
    Schöberl, J
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2002, 9 (03) : 223 - 238
  • [38] Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping
    De Basabe, Jonas D.
    Sen, Mrinal K.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 181 (01) : 577 - 590
  • [39] HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS
    Falk, Richard S.
    Gatto, Paolo
    Monk, Peter
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (01): : 115 - 143
  • [40] ELEMENTS: A high-order finite element library in C++
    Moore, Jacob L.
    Morgan, Nathaniel R.
    Horstemeyer, Mark F.
    SOFTWAREX, 2019, 10