High-order multigrid strategies for hybrid high-order discretizations of elliptic equations

被引:1
|
作者
Di Pietro, Daniele A. [1 ]
Matalon, Pierre [1 ,2 ,3 ]
Mycek, Paul [2 ]
Ruede, Ulrich [2 ,3 ]
机构
[1] Univ Montpellier, CNRS, IMAG, Montpellier, France
[2] CERFACS, Toulouse, France
[3] FAU, Erlangen, Germany
关键词
elliptic partial differential equation; hybrid high-order; multigrid; coarsening strategy; LOCKING; GRADIENT;
D O I
10.1002/nla.2456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study compares various multigrid strategies for the fast solution of elliptic equations discretized by the hybrid high-order method. Combinations of h$$ h $$-, p$$ p $$-, and hp$$ hp $$-coarsening strategies are considered, combined with diverse intergrid transfer operators. Comparisons are made experimentally on 2D and 3D test cases, with structured and unstructured meshes, and with nested and non-nested hierarchies. Advantages and drawbacks of each strategy are discussed for each case to establish simplified guidelines for the optimization of the time to solution.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Hybrid multigrid methods for high-order discontinuous Galerkin discretizations
    Fehn, Niklas
    Munch, Peter
    Wall, Wolfgang A.
    Kronbichler, Martin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 415
  • [2] AN H-MULTIGRID METHOD FOR HYBRID HIGH-ORDER DISCRETIZATIONS
    Di Pietro, Daniele A.
    Hulsemann, Frank
    Matalon, Pierre
    Mycek, Paul
    Ruede, Ulrich
    Ruiz, Daniel
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05): : S839 - S861
  • [3] Multigrid solution of automatically generated high-order discretizations for the biharmonic equation
    Altas, I
    Dym, J
    Gupta, MM
    Manohar, RP
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05): : 1575 - 1585
  • [4] Preconditioning High-Order Discontinuous Galerkin Discretizations of Elliptic Problems
    Antonietti, Paola F.
    Houston, Paul
    Lecture Notes in Computational Science and Engineering, 2013, 91 : 231 - 238
  • [5] Comparison of multigrid algorithms for high-order continuous finite element discretizations
    Sundar, Hari
    Stadler, Georg
    Biros, George
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (04) : 664 - 680
  • [6] FAMILIES OF HIGH-ORDER ACCURATE DISCRETIZATIONS OF SOME ELLIPTIC PROBLEMS
    BOISVERT, RF
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1981, 2 (03): : 268 - 284
  • [7] HIGH-ORDER QUASILINEAR ELLIPTIC-EQUATIONS
    POKHOZHAEV, SI
    DIFFERENTIAL EQUATIONS, 1981, 17 (01) : 78 - 88
  • [8] Multigrid solution for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations
    Oliver, Todd A.
    Fidkowski, Krzysztof J.
    Darmofal, David L.
    COMPUTATIONAL FLUID DYNAMICS 2004, PROCEEDINGS, 2006, : 455 - +
  • [9] Towards robust, fast solutions of elliptic equations on complex domains through hybrid high-order discretizations and non-nested multigrid methods
    Di Pietro, Daniele A.
    Hulsemann, Frank
    Matalon, Pierre
    Mycek, Paul
    Ruede, Ulrich
    Ruiz, Daniel
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (22) : 6576 - 6595
  • [10] Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations
    Shahbazi, Khosro
    Mavriplis, Dimitri J.
    Burgess, Nicholas K.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (21) : 7917 - 7940