ALGEBRAIC MULTIGRID FOR HIGH-ORDER HIERARCHICAL H(curl) FINITE ELEMENTS

被引:2
|
作者
Lai, James H. [1 ]
Olson, Luke N. [1 ]
机构
[1] Univ Illinois, Siebel Ctr Comp Sci, Urbana, IL 61801 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 05期
基金
美国国家科学基金会;
关键词
algebraic multigrid; high-order; curl; edge elements;
D O I
10.1137/100799095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classic multigrid methods are often not directly applicable to nonelliptic problems such as curl-type partial differential equations (PDEs). Curl-curl PDEs require specialized smoothers that are compatible with the gradient-like (near) null space. Moreover, recent developments have focused on replicating the grad-curl-div de Rham complex in a multilevel hierarchy through smoothed aggregation based algebraic multigrid. These approaches have been successful for Nedelec finite elements (i.e., H(curl) edge elements), but do not extend naturally to high-order representations. In this paper we consider hierarchical high-order Whitney elements for the curl-curl eddy current problem and devise a scalable multilevel approach. Our method generates a hierarchy similar to p-type multigrid, which results in a coarse level that is amenable to further coarsening through the established process of a multilevel complex. The natural hierarchy of the elements induces an effective interpolation operator and motivates the construction of a compatible gradient smoothing process. We detail the multilevel solver for a hierarchical H(curl) basis and present numerical results in support of the method.
引用
收藏
页码:2888 / 2902
页数:15
相关论文
共 50 条
  • [21] Hypergeometric summation algorithms for high-order finite elements
    Becirovic, A.
    Paule, P.
    Pillwein, V.
    Riese, A.
    Schneider, C.
    Schoeberl, J.
    COMPUTING, 2006, 78 (03) : 235 - 249
  • [22] High-order finite elements for structural dynamics applications
    Lisandrin, Paolo
    Van Tooren, Michel
    Journal of Aircraft, 1600, 45 (02): : 388 - 401
  • [23] Nonconforming mesh refinement for high-order finite elements
    Červený, Jakub
    Dobrev, Veselin
    Kolev, Tzanio
    SIAM Journal on Scientific Computing, 2019, 41 (04):
  • [24] NONCONFORMING MESH REFINEMENT FOR HIGH-ORDER FINITE ELEMENTS
    Cerveny, Jakub
    Dobrev, Veselin
    Kolev, Tzanio
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : C367 - C392
  • [25] High-order finite elements for the solution of Helmholtz problems
    Christodoulou, K.
    Laghrouche, O.
    Mohamed, M. S.
    Trevelyan, J.
    COMPUTERS & STRUCTURES, 2017, 191 : 129 - 139
  • [26] High-order finite elements for structural dynamics applications
    Lisandrin, Paolo
    Van Tooren, Michel
    JOURNAL OF AIRCRAFT, 2008, 45 (02): : 388 - 401
  • [27] Geometrical validity of high-order triangular finite elements
    Johnen, A.
    Remacle, J. -F.
    Geuzaine, C.
    ENGINEERING WITH COMPUTERS, 2014, 30 (03) : 375 - 382
  • [28] Geometrical validity of high-order triangular finite elements
    A. Johnen
    J.-F. Remacle
    C. Geuzaine
    Engineering with Computers, 2014, 30 : 375 - 382
  • [29] DISCRETIZATION AND COMPUTATIONAL ERRORS IN HIGH-ORDER FINITE ELEMENTS
    FRIED, I
    AIAA JOURNAL, 1971, 9 (10) : 2071 - &
  • [30] Hypergeometric Summation Algorithms for High-order Finite Elements
    A. Bećirović
    P. Paule
    V. Pillwein
    A. Riese
    C. Schneider
    J. Schöberl
    Computing, 2006, 78 : 235 - 249