ALGEBRAIC MULTIGRID FOR HIGH-ORDER HIERARCHICAL H(curl) FINITE ELEMENTS

被引:2
|
作者
Lai, James H. [1 ]
Olson, Luke N. [1 ]
机构
[1] Univ Illinois, Siebel Ctr Comp Sci, Urbana, IL 61801 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 05期
基金
美国国家科学基金会;
关键词
algebraic multigrid; high-order; curl; edge elements;
D O I
10.1137/100799095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classic multigrid methods are often not directly applicable to nonelliptic problems such as curl-type partial differential equations (PDEs). Curl-curl PDEs require specialized smoothers that are compatible with the gradient-like (near) null space. Moreover, recent developments have focused on replicating the grad-curl-div de Rham complex in a multilevel hierarchy through smoothed aggregation based algebraic multigrid. These approaches have been successful for Nedelec finite elements (i.e., H(curl) edge elements), but do not extend naturally to high-order representations. In this paper we consider hierarchical high-order Whitney elements for the curl-curl eddy current problem and devise a scalable multilevel approach. Our method generates a hierarchy similar to p-type multigrid, which results in a coarse level that is amenable to further coarsening through the established process of a multilevel complex. The natural hierarchy of the elements induces an effective interpolation operator and motivates the construction of a compatible gradient smoothing process. We detail the multilevel solver for a hierarchical H(curl) basis and present numerical results in support of the method.
引用
收藏
页码:2888 / 2902
页数:15
相关论文
共 50 条
  • [41] Efficient implementation of high-order finite elements for Helmholtz problems
    Beriot, Hadrien
    Prinn, Albert
    Gabard, Gwenael
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 106 (03) : 213 - 240
  • [43] High-order finite elements applied to the discrete Boltzmann equation
    Duester, Alexander
    Dernkowicz, Leszek
    Rank, Ernst
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (08) : 1094 - 1121
  • [44] HIGH-ORDER TRANSFORMATION METHODS FOR CURVED FINITE-ELEMENTS
    MCLEOD, R
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1978, 21 (04): : 419 - 428
  • [45] A Numerical Investigation of High-Order Finite Elements for Problems of Elastoplasticity
    Duester, A.
    Niggl, A.
    Nuebel, V.
    Rank, E.
    JOURNAL OF SCIENTIFIC COMPUTING, 2002, 17 (1-4) : 397 - 404
  • [46] High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics
    Dobrev, Veselin A.
    Ellis, Truman E.
    Kolev, Tzanio V.
    Rieben, Robert N.
    COMPUTERS & FLUIDS, 2013, 83 : 58 - 69
  • [47] Incorporation of contact for high-order finite elements in covariant form
    Konyukhov, Alexander
    Schweizerhof, Karl
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (13-14) : 1213 - 1223
  • [48] High-order cut finite elements for the elastic wave equation
    Simon Sticko
    Gustav Ludvigsson
    Gunilla Kreiss
    Advances in Computational Mathematics, 2020, 46
  • [49] Nonlinear magnetohydrodynamics simulation using high-order finite elements
    Sovinec, CR
    Glasser, AH
    Gianakon, TA
    Barnes, DC
    Nebel, RA
    Kruger, SE
    Schnack, DD
    Plimpton, SJ
    Tarditi, A
    Chu, MS
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (01) : 355 - 386
  • [50] A Numerical Investigation of High-Order Finite Elements for Problems of Elastoplasticity
    A. Düster
    A. Niggl
    V. Nübel
    E. Rank
    Journal of Scientific Computing, 2002, 17 : 397 - 404