A posteriori error estimates in a globally convergent FEM for a hyperbolic coefficient inverse problem

被引:14
|
作者
Asadzadeh, M.
Beilina, L. [1 ]
机构
[1] Chalmers Univ Technol, Dept Math, SE-41296 Gothenburg, Sweden
关键词
RECONSTRUCTION;
D O I
10.1088/0266-5611/26/11/115007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study concerns a posteriori error estimates in a globally convergent numerical method for a hyperbolic coefficient inverse problem. Using the Laplace transform the model problem is reduced to a nonlinear elliptic equation with a gradient dependent nonlinearity. We investigate the behavior of the nonlinear term in both a priori and a posteriori settings and derive optimal a posteriori error estimates for a finite-element approximation of this problem. Numerical experiments justify the efficiency of a posteriori estimates in the globally convergent approach.
引用
收藏
页数:34
相关论文
共 50 条