A posteriori error estimates in a globally convergent FEM for a hyperbolic coefficient inverse problem

被引:14
|
作者
Asadzadeh, M.
Beilina, L. [1 ]
机构
[1] Chalmers Univ Technol, Dept Math, SE-41296 Gothenburg, Sweden
关键词
RECONSTRUCTION;
D O I
10.1088/0266-5611/26/11/115007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study concerns a posteriori error estimates in a globally convergent numerical method for a hyperbolic coefficient inverse problem. Using the Laplace transform the model problem is reduced to a nonlinear elliptic equation with a gradient dependent nonlinearity. We investigate the behavior of the nonlinear term in both a priori and a posteriori settings and derive optimal a posteriori error estimates for a finite-element approximation of this problem. Numerical experiments justify the efficiency of a posteriori estimates in the globally convergent approach.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] A posteriori error estimates for a Steklov eigenvalue problem
    Sun, LingLing
    Yang, Yidu
    ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2081 - 2086
  • [22] A posteriori error estimates for the generalized Stokes problem
    Repin S.
    Stenberg R.
    Journal of Mathematical Sciences, 2007, 142 (1) : 1828 - 1843
  • [23] A posteriori error estimates for a Maxwell type problem
    Anjam, I.
    Mali, O.
    Muzalevsky, A.
    Neittaanmaki, R.
    Repin, S.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2009, 24 (05) : 395 - 408
  • [24] A POSTERIORI ERROR-ESTIMATES FOR THE STOKES PROBLEM
    BANK, RE
    WELFERT, BD
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) : 591 - 623
  • [25] A globally convergent convexification algorithm for multidimensional coefficient inverse problems
    Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, United States
    不详
    Journal of Inverse and Ill-Posed Problems, 2007, 15 (02): : 167 - 179
  • [26] Globally Convergent Numerical Methods for Some Coefficient Inverse Problems
    Xin, Jianguo
    Beilina, Larisa
    Klibanov, Michael V.
    COMPUTING IN SCIENCE & ENGINEERING, 2010, 12 (05) : 64 - 76
  • [27] A Posteriori Error Estimates for Numerical Solutions to Hyperbolic Conservation Laws
    Alberto Bressan
    Maria Teresa Chiri
    Wen Shen
    Archive for Rational Mechanics and Analysis, 2021, 241 : 357 - 402
  • [28] A Posteriori Error Estimates for Numerical Solutions to Hyperbolic Conservation Laws
    Bressan, Alberto
    Chiri, Maria Teresa
    Shen, Wen
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 241 (01) : 357 - 402
  • [29] A posteriori error estimates based on superconvergence of FEM for fractional evolution equations
    Tang, Yuelong
    Hua, Yuchun
    OPEN MATHEMATICS, 2021, 19 (01): : 1210 - 1222
  • [30] A POSTERIORI ERROR ESTIMATES OF hp-FEM FOR OPTIMAL CONTROL PROBLEMS
    Gong, Wei
    Liu, Wenbin
    Yan, Ningning
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (01) : 48 - 69