A posteriori error estimates in a globally convergent FEM for a hyperbolic coefficient inverse problem

被引:14
|
作者
Asadzadeh, M.
Beilina, L. [1 ]
机构
[1] Chalmers Univ Technol, Dept Math, SE-41296 Gothenburg, Sweden
关键词
RECONSTRUCTION;
D O I
10.1088/0266-5611/26/11/115007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study concerns a posteriori error estimates in a globally convergent numerical method for a hyperbolic coefficient inverse problem. Using the Laplace transform the model problem is reduced to a nonlinear elliptic equation with a gradient dependent nonlinearity. We investigate the behavior of the nonlinear term in both a priori and a posteriori settings and derive optimal a posteriori error estimates for a finite-element approximation of this problem. Numerical experiments justify the efficiency of a posteriori estimates in the globally convergent approach.
引用
收藏
页数:34
相关论文
共 50 条
  • [41] A globally convergent numerical method for coefficient inverse problems for thermal tomography
    Pantong, Natee
    Rhoden, Aubrey
    Yang, Shao-Hua
    Boetcher, Sandra
    Liu, Hanli
    Su, Jianzhong
    APPLICABLE ANALYSIS, 2011, 90 (10) : 1573 - 1594
  • [42] Numerical solution of a coefficient inverse problem with multi-frequency experimental raw data by a globally convergent algorithm
    Dinh-Liem Nguyen
    Klibanov, Michael V.
    Nguyen, Loc H.
    Kolesov, Aleksandr E.
    Fiddy, Michael A.
    Liu, Hui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 345 : 17 - 32
  • [43] A GLOBALLY CONVERGENT NUMERICAL METHOD FOR A 3D COEFFICIENT INVERSE PROBLEM FOR A WAVE-LIKE EQUATION
    Klibanov, Michael V.
    Li, Jingzhi
    Zhang, Wenlong
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (05): : A3341 - A3365
  • [44] The a posteriori error estimates and an adaptive algorithm of the FEM for transmission eigenvalues for anisotropic media
    Wang, Shixi
    Bi, Hai
    Yang, Yidu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 150 : 156 - 169
  • [45] A posteriori error estimates for the Johnson-Nedelec FEM-BEM coupling
    Aurada, M.
    Feischl, M.
    Karkulik, M.
    Praetorius, D.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (02) : 255 - 266
  • [46] A Priori and a Posteriori Estimates for Solving One Evolutionary Inverse Problem
    Andreev, V. K.
    Stepanova, I. V.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2024, 166 (01): : 5 - 21
  • [47] A Posteriori Error Estimates for Darcy-Forchheimer's Problem
    Sayah, Toni
    Semaan, Georges
    Triki, Faouzi
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (02) : 517 - 544
  • [48] A POSTERIORI ERROR ESTIMATES OF THE DISCONTINUOUS GALERKIN METHOD FOR PARABOLIC PROBLEM
    Sebestova, Ivana
    Dolejsi, Vit
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 15, 2010, : 158 - 163
  • [49] A Posteriori Error Estimates for the Approximations of the Stresses in the Hencky Plasticity Problem
    Fuchs, M.
    Repin, S.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (06) : 610 - 640
  • [50] A Posteriori Error Estimates for Two-Phase Obstacle Problem
    Repin S.
    Valdman J.
    Journal of Mathematical Sciences, 2015, 207 (2) : 324 - 335