A posteriori error estimates in a globally convergent FEM for a hyperbolic coefficient inverse problem

被引:14
|
作者
Asadzadeh, M.
Beilina, L. [1 ]
机构
[1] Chalmers Univ Technol, Dept Math, SE-41296 Gothenburg, Sweden
关键词
RECONSTRUCTION;
D O I
10.1088/0266-5611/26/11/115007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study concerns a posteriori error estimates in a globally convergent numerical method for a hyperbolic coefficient inverse problem. Using the Laplace transform the model problem is reduced to a nonlinear elliptic equation with a gradient dependent nonlinearity. We investigate the behavior of the nonlinear term in both a priori and a posteriori settings and derive optimal a posteriori error estimates for a finite-element approximation of this problem. Numerical experiments justify the efficiency of a posteriori estimates in the globally convergent approach.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] A posteriori error estimates for numerical solutions to inverse problems of elastography
    Leonov, A. S.
    Sharov, A. N.
    Yagola, A. G.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2017, 25 (01) : 114 - 128
  • [32] A Posteriori Error Estimates on Stars for Convection Diffusion Problem
    Achchab, B.
    Agouzal, A.
    Bouihat, K.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (07) : 67 - 72
  • [33] A posteriori error estimates for the Brinkman–Darcy–Forchheimer problem
    Toni Sayah
    Computational and Applied Mathematics, 2021, 40
  • [34] On the functional type a posteriori error estimates for the stokes problem
    Gorshkova, E.
    Repin, S.
    ECCOMAS - Eur. Congr. Comput. Methods Appl. Sci. Eng.,
  • [35] A Posteriori Error Estimates for Maxwell's Eigenvalue Problem
    Boffi, Daniele
    Gastaldi, Lucia
    Rodriguez, Rodolfo
    Sebestova, Ivana
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1250 - 1271
  • [36] A Posteriori Error Estimates for Maxwell’s Eigenvalue Problem
    Daniele Boffi
    Lucia Gastaldi
    Rodolfo Rodríguez
    Ivana Šebestová
    Journal of Scientific Computing, 2019, 78 : 1250 - 1271
  • [37] A posteriori error estimates for the Stokes problem with singular sources
    Allendes, Alejandro
    Otarola, Enrique
    Salgado, Abner J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 345 : 1007 - 1032
  • [38] A posteriori error estimates for the problem of electrostatics with a dipole source
    Rodriguez, A. Alonso
    Camano, J.
    Rodriguez, R.
    Valli, A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (04) : 464 - 485
  • [39] Functional A Posteriori Error Estimates for the Parabolic Obstacle Problem
    Apushkinskaya, Darya
    Repin, Sergey
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (02) : 259 - 276
  • [40] A POSTERIORI ERROR ESTIMATES FOR THE ALLEN-CAHN PROBLEM
    Chrysafinos, Konstantinos
    Georgoulis, Emmanuil H.
    Plaka, Dimitra
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) : 2662 - 2683