A posteriori error estimates for mixed FEM in elasticity

被引:0
|
作者
Carsten Carstensen
Georg Dolzmann
机构
[1] Mathematisches Seminar,
[2] Christian-Albrechts-Universität zu Kiel,undefined
[3] Ludewig-Meyn-Str. 4,undefined
[4] D-24098 Kiel,undefined
[5] Germany; e-mail: cc@numerik.uni-kiel.de ,undefined
[6] Max-Planck-Institute for Mathematics in the Sciences,undefined
[7] Inselstr. 22-26,undefined
[8] D-04103 Leipzig,undefined
[9] Germany; e-mail: georg@mis.mpg.de ,undefined
来源
Numerische Mathematik | 1998年 / 81卷
关键词
Mathematics Subject Classification (1991): 65N30, 65N15, 73C35;
D O I
暂无
中图分类号
学科分类号
摘要
A residue based reliable and efficient error estimator is established for finite element solutions of mixed boundary value problems in linear, planar elasticity. The proof of the reliability of the estimator is based on Helmholtz type decompositions of the error in the stress variable and a duality argument for the error in the displacements. The efficiency follows from inverse estimates. The constants in both estimates are independent of the Lamé constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lambda$\end{document}, and so locking phenomena for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lambda\to\infty$\end{document} are properly indicated. The analysis justifies a new adaptive algorithm for automatic mesh–refinement.
引用
收藏
页码:187 / 209
页数:22
相关论文
共 50 条
  • [1] A posteriori error estimates for mixed FEM in elasticity
    Carstensen, C
    Dolzmann, G
    NUMERISCHE MATHEMATIK, 1998, 81 (02) : 187 - 209
  • [2] Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity
    Barrios, Tomas P.
    Behrens, Edwin M.
    Gonzalez, Maria
    APPLIED NUMERICAL MATHEMATICS, 2014, 84 : 46 - 65
  • [3] A posteriori error estimates for FEM with violated Galerkin orthogonality
    Angermann, L
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2002, 18 (02) : 241 - 259
  • [4] A posteriori error estimates for linear problems in Cosserat elasticity
    Churilova, M. A.
    Frolov, M. E.
    12TH INTERNATIONAL CONFERENCE - MESH METHODS FOR BOUNDARY: VALUE PROBLEMS AND APPLICATIONS, 2019, 1158
  • [5] A posteriori error estimates for a mixed-FEM formulation of a non-linear elliptic problem
    Araya, R
    Barrios, TP
    Gatica, GN
    Heuer, N
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (21-22) : 2317 - 2336
  • [6] A comparison of a posteriori error estimates for biharmonic problems solved by the FEM
    Segeth, Karel
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (18) : 4788 - 4797
  • [7] A posteriori error estimates for discontinuous Galerkin method to the elasticity problem
    Thi Hong Cam Luong
    Daveau, Christian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) : 1348 - 1369
  • [8] A-posteriori error estimates for linear exterior problems via mixed-FEM and DtN mappings
    Barrientos, MA
    Gatica, GN
    Maischak, M
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (02): : 241 - 272
  • [9] A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem
    Felipe Lepe
    Gonzalo Rivera
    Jesus Vellojin
    Journal of Scientific Computing, 2022, 93
  • [10] A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem
    Lepe, Felipe
    Rivera, Gonzalo
    Vellojin, Jesus
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (01)