A posteriori error estimates for mixed FEM in elasticity

被引:0
|
作者
Carsten Carstensen
Georg Dolzmann
机构
[1] Mathematisches Seminar,
[2] Christian-Albrechts-Universität zu Kiel,undefined
[3] Ludewig-Meyn-Str. 4,undefined
[4] D-24098 Kiel,undefined
[5] Germany; e-mail: cc@numerik.uni-kiel.de ,undefined
[6] Max-Planck-Institute for Mathematics in the Sciences,undefined
[7] Inselstr. 22-26,undefined
[8] D-04103 Leipzig,undefined
[9] Germany; e-mail: georg@mis.mpg.de ,undefined
来源
Numerische Mathematik | 1998年 / 81卷
关键词
Mathematics Subject Classification (1991): 65N30, 65N15, 73C35;
D O I
暂无
中图分类号
学科分类号
摘要
A residue based reliable and efficient error estimator is established for finite element solutions of mixed boundary value problems in linear, planar elasticity. The proof of the reliability of the estimator is based on Helmholtz type decompositions of the error in the stress variable and a duality argument for the error in the displacements. The efficiency follows from inverse estimates. The constants in both estimates are independent of the Lamé constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lambda$\end{document}, and so locking phenomena for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\lambda\to\infty$\end{document} are properly indicated. The analysis justifies a new adaptive algorithm for automatic mesh–refinement.
引用
收藏
页码:187 / 209
页数:22
相关论文
共 50 条