Bezier variant of modified α-Bernstein operators

被引:4
|
作者
Agrawal, P. N. [1 ]
Bhardwaj, Neha [2 ]
Bawa, Parveen [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Amity Univ Uttar Pradesh, Amity Inst Appl Sci, Dept Math, Noida 201303, India
关键词
Bezier operators; Modified alpha-Bernstein operators; Modulus of continuity; Ditizian-Totik modulus of smoothness; Rate of convergence; Bounded variation; Voronovskaja theorerm; APPROXIMATION; CONVERGENCE;
D O I
10.1007/s12215-021-00613-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce the Bezier variant of modified alpha-Bernstein operators and study the degree of approximation using second order modulus of continuity. We also establish a direct approximation theorem with the aid of Ditzian-Totik modulus of smoothness and the Peetre's K-functional. Further, we obtain a quantitative Voronovskaja type theorem and the rate of convergence for functions with a derivative of bounded variation on [0, 1]. Finally, we depict the rate of convergence of these operators for certain functions by graphical illustration using Matlab software.
引用
收藏
页码:807 / 827
页数:21
相关论文
共 50 条
  • [41] A Class of Modified Bernstein-Durrmeyer Operators
    Zhao, Jianwei
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (02) : 208 - 217
  • [42] ON COMPLEX MODIFIED BERNSTEIN-STANCU OPERATORS
    Cetin, Nursel
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023, 6 (01): : 63 - 77
  • [43] Modified α-Bernstein-Durrmeyer-Type Operators
    Agrawal, P. N.
    Kajla, Arun
    Singh, Sompal
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (06): : 2049 - 2061
  • [44] Weighted approximation by modified Kantorovich–Bernstein operators
    Dansheng Yu
    Acta Mathematica Hungarica, 2013, 141 : 132 - 149
  • [45] Modified ρ-Bernstein Operators for Functions of Two Variables
    Agrawal, P. N.
    Kajla, Arun
    Kumar, Dharmendra
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (09) : 1073 - 1095
  • [46] Nullity diminishing property for modified Bernstein operators
    Derriennic, MM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (08): : 825 - 829
  • [47] MODIFIED α-BERNSTEIN OPERATORS WITH BETTER APPROXIMATION PROPERTIES
    Kajla, Arun
    Acar, Tuncer
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (04) : 570 - 582
  • [48] Blending type approximation by modified Bernstein operators
    Ana Maria Acu
    Arun Kajla
    Advances in Operator Theory, 2022, 7
  • [49] Approximation by Modified Durrmeyer-Bernstein Operators
    Chen Wenzhong(Department of Mathematics
    数学研究与评论, 1989, (01) : 40 - 39
  • [50] On the Properties of the Modified λ-Bernstein-Stancu Operators
    Lin, Zhi-Peng
    Torun, Gulten
    Kangal, Esma
    Kantar, Ulku Dinlemez
    Cai, Qing-Bo
    SYMMETRY-BASEL, 2024, 16 (10):