Bezier variant of modified α-Bernstein operators

被引:4
|
作者
Agrawal, P. N. [1 ]
Bhardwaj, Neha [2 ]
Bawa, Parveen [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Amity Univ Uttar Pradesh, Amity Inst Appl Sci, Dept Math, Noida 201303, India
关键词
Bezier operators; Modified alpha-Bernstein operators; Modulus of continuity; Ditizian-Totik modulus of smoothness; Rate of convergence; Bounded variation; Voronovskaja theorerm; APPROXIMATION; CONVERGENCE;
D O I
10.1007/s12215-021-00613-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce the Bezier variant of modified alpha-Bernstein operators and study the degree of approximation using second order modulus of continuity. We also establish a direct approximation theorem with the aid of Ditzian-Totik modulus of smoothness and the Peetre's K-functional. Further, we obtain a quantitative Voronovskaja type theorem and the rate of convergence for functions with a derivative of bounded variation on [0, 1]. Finally, we depict the rate of convergence of these operators for certain functions by graphical illustration using Matlab software.
引用
收藏
页码:807 / 827
页数:21
相关论文
共 50 条
  • [31] Simultaneous approximation for the Bezier variant of Baskakov-Beta operators
    Govil, N. K.
    Gupta, Vijay
    MATHEMATICAL AND COMPUTER MODELLING, 2006, 44 (11-12) : 1153 - 1159
  • [32] The Bézier variant of Kantorovich type λ-Bernstein operators
    Qing-Bo Cai
    Journal of Inequalities and Applications, 2018
  • [33] Local approximation by a variant of Bernstein-Durrmeyer operators
    Abel, Ulrich
    Gupta, Vijay
    Mohapatra, Ram N.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) : 3372 - 3381
  • [34] THE BEZIER VARIANT OF LUPAS KANTOROVICH OPERATORS BASED ON POLYA DISTRIBUTION
    Lian, Bo-Yong
    Cai, Qing-Bo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 1107 - 1116
  • [35] Approximation by a new Stancu variant of generalized (λ, μ)-Bernstein operators
    Cai, Qing-Bo
    Aslan, Resat
    Ozger, Faruk
    Srivastava, Hari Mohan
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 107 : 205 - 214
  • [36] ON THE RATE OF CONVERGENCE OF BEZIER VARIANT OF SZASZ-DURRMEYER OPERATORS
    Vijay Gupta (Netaji Subhas Institute of Technology
    Analysis in Theory and Applications, 2003, (01) : 81 - 88
  • [37] On the rates of convergence of BBH-Kantorovich operators and their Bezier variant
    Karsli, Harun
    Pych-Taberska, Paulina
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2960 - 2967
  • [38] ON THE RATES OF CONVERGENCE OF CHLODOVSKY-DURRMEYER OPERATORS AND THEIR BEZIER VARIANT
    Karsli, Harun
    Pych-Taberska, Paulina
    GEORGIAN MATHEMATICAL JOURNAL, 2009, 16 (04) : 693 - 704
  • [39] IMAGE-CODING USING MODIFIED BEZIER-BERNSTEIN APPROXIMATION
    BISWAS, S
    PAL, SK
    INFORMATION SCIENCES, 1995, 83 (3-4) : 175 - 197
  • [40] On approximation properties of some non-positive Bernstein-Durrmeyer type operators modified in the Bezier-King sense
    Vasian, Bianca Ioana
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2023, 16 (03): : 104 - 117