Bezier variant of modified α-Bernstein operators

被引:4
|
作者
Agrawal, P. N. [1 ]
Bhardwaj, Neha [2 ]
Bawa, Parveen [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Amity Univ Uttar Pradesh, Amity Inst Appl Sci, Dept Math, Noida 201303, India
关键词
Bezier operators; Modified alpha-Bernstein operators; Modulus of continuity; Ditizian-Totik modulus of smoothness; Rate of convergence; Bounded variation; Voronovskaja theorerm; APPROXIMATION; CONVERGENCE;
D O I
10.1007/s12215-021-00613-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce the Bezier variant of modified alpha-Bernstein operators and study the degree of approximation using second order modulus of continuity. We also establish a direct approximation theorem with the aid of Ditzian-Totik modulus of smoothness and the Peetre's K-functional. Further, we obtain a quantitative Voronovskaja type theorem and the rate of convergence for functions with a derivative of bounded variation on [0, 1]. Finally, we depict the rate of convergence of these operators for certain functions by graphical illustration using Matlab software.
引用
收藏
页码:807 / 827
页数:21
相关论文
共 50 条
  • [21] Approximating fractional calculus operators with general analytic kernel by Stancu variant of modified Bernstein-Kantorovich operators
    Ozarslan, Mehmet Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (05) : 3809 - 3825
  • [22] Pointwise approximation by Bezier variant of integrated MKZ operators
    Zeng, Xiao-Ming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 823 - 832
  • [23] Bezier variant of summation-integral type operators
    Neha
    Deo, Naokant
    Pratap, Ram
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 889 - 900
  • [24] Rate of simultaneous approximation for the Bezier variant of certain operators
    Gupta, Vijay
    Ivan, Mircea
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (01) : 392 - 395
  • [25] On the Bezier variant of generalized Kantorovich type Balazs operators
    Gupta, V
    Ispir, N
    APPLIED MATHEMATICS LETTERS, 2005, 18 (09) : 1053 - 1061
  • [26] The pointwise estimate for modified Bernstein operators
    Guo, S
    Liu, L
    Liu, X
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2001, 37 (1-2) : 69 - 81
  • [27] A new class of modified Bernstein operators
    Kageyama, Y
    JOURNAL OF APPROXIMATION THEORY, 1999, 101 (01) : 121 - 147
  • [28] Parametric Generalization of the Modified Bernstein Operators
    Sofyalioglu, Melek
    Kanat, Kadir
    Cekim, Bayram
    FILOMAT, 2022, 36 (05) : 1699 - 1709
  • [29] Genuine modified Bernstein–Durrmeyer operators
    Syed Abdul Mohiuddine
    Tuncer Acar
    Mohammed A. Alghamdi
    Journal of Inequalities and Applications, 2018
  • [30] Generalized Bezier Curves Based on Bernstein-Stancu-Chlodowsky Type Operators
    Khatri, Kejal
    Mishra, Vishnu Narayan
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40