Modified α-Bernstein-Durrmeyer-Type Operators

被引:0
|
作者
Agrawal, P. N. [1 ]
Kajla, Arun [2 ]
Singh, Sompal [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Cent Univ Haryana, Dept Math, Jant 123031, Haryana, India
关键词
Peetre's K-functional; Ditzian-Totik modulus of smoothness; Voronovskaja-type theorem; Gruss Voronovskaja-type theorem; Functions of bounded variation; APPROXIMATION PROPERTIES; POLYNOMIALS; CONVERGENCE; DERIVATIVES; THEOREM;
D O I
10.1007/s40995-021-01197-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we construct a Durrmeyer variant of the modified alpha-Bernstein-type operators introduced by Kajla and Acar (Ann Funct Anal 10(4):570-582, 2019), for alpha is an element of[0,1]. We investigate the degree of approximation via the approach of Peetre's K-functional and the Lipschitz-type maximal function. The quantitative Voronovskaja- and Gruss Voronovskaja-type theorems are discussed. Further, we determine the rate of convergence by the above operators for the functions with derivatives of bounded variation.
引用
收藏
页码:2049 / 2061
页数:13
相关论文
共 50 条
  • [1] GBS operators of bivariate Bernstein-Durrmeyer-type on a triangle
    Ruchi, Ruchi
    Baxhaku, Behar
    Agrawal, Purshottam N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (07) : 2673 - 2683
  • [2] Approximation by Bernstein-Durrmeyer-type operators in compact disks
    Mahmudov, N. I.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (07) : 1231 - 1238
  • [3] On Approximation of Bernstein-Durrmeyer-Type Operators in Movable Interval
    Wang, Fengfeng
    Yu, Dansheng
    FILOMAT, 2021, 35 (04) : 1191 - 1203
  • [4] On approximation by Stancu variant of Bernstein-Durrmeyer-type operators in movable compact disks
    Yu, Danshegn
    Pang, Zhaojun
    DEMONSTRATIO MATHEMATICA, 2025, 58 (01)
  • [5] Modified Bernstein-Durrmeyer Type Operators
    Kajla, Arun
    Miclaus, Dan
    MATHEMATICS, 2022, 10 (11)
  • [6] Genuine modified Bernstein–Durrmeyer operators
    Syed Abdul Mohiuddine
    Tuncer Acar
    Mohammed A. Alghamdi
    Journal of Inequalities and Applications, 2018
  • [7] BETTER DEGREE OF APPROXIMATION BY MODIFIED BERNSTEIN-DURRMEYER TYPE OPERATORS
    Agrawal, Purshottam Narain
    Gungor, Sule Yuksel
    Kumar, Abhishek
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2022, 5 (02): : 75 - 92
  • [8] Approximation by Modified Durrmeyer-Bernstein Operators
    Chen Wenzhong(Department of Mathematics
    数学研究与评论, 1989, (01) : 40 - 39
  • [9] A Class of Modified Bernstein-Durrmeyer Operators
    Zhao, Jianwei
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (02) : 208 - 217
  • [10] Genuine modified Bernstein-Durrmeyer operators
    Mohiuddine, Syed Abdul
    Acar, Tuncer
    Alghamdi, Mohammed A.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,