Billiards in an ellipse

被引:0
|
作者
Flatto, L
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The billiard problem was introduced by G. Birkhoff. For elliptic tables, the problem is integrable. Using notions from Riemann surfaces, we derive the invariant measure associated with the problem. The measure is used to obtain a complete description of billiard trajectories and their associated dynamics.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 50 条
  • [31] Lethal billiards
    Philippe Claeys
    Steven Goderis
    Nature, 2007, 449 : 30 - 31
  • [32] BEE BILLIARDS
    不详
    NATURAL HISTORY, 1990, (04) : 120 - 121
  • [33] ROTATING BILLIARDS
    FRISK, H
    ARVIEU, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (11): : 1765 - 1778
  • [34] REMARKS ON BILLIARDS
    SINE, R
    KREINOVIC, V
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (03): : 204 - 206
  • [35] Leaking billiards
    Nagler, Jan
    Krieger, Moritz
    Linke, Marco
    Schoenke, Johannes
    Wiersig, Jan
    PHYSICAL REVIEW E, 2007, 75 (04):
  • [36] On the Diagonals of Billiards
    Stachel, Hellmuth
    ICGG 2022 - PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS, 2023, 146 : 19 - 33
  • [37] Invisibility in billiards
    Plakhov, Alexander
    Roshchina, Vera
    NONLINEARITY, 2011, 24 (03) : 847 - 854
  • [38] ACTION BILLIARDS
    DEAGUIAR, MAM
    DEALMEIDA, AMO
    NONLINEARITY, 1992, 5 (02) : 523 - 539
  • [39] Dual billiards
    Dogru, F
    Tabachnikov, S
    MATHEMATICAL INTELLIGENCER, 2005, 27 (04): : 18 - 25
  • [40] Andreev billiards
    Beenakker, CWJ
    QUANTUM DOTS: A DOORWAY TO NANOSCALE PHYSICS, 2005, 667 : 131 - 174