Andreev billiards

被引:0
|
作者
Beenakker, CWJ [1 ]
机构
[1] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This is a review of recent advances in our understanding of how Andreev reflection at a superconductor modifies the excitation spectrum of a quantum dot. The emphasis is on two-dimensional impurity-free structures in which the classical dynamics is chaotic. Such Andreev billiards differ in a fundamental way from their non-superconducting counterparts. Most notably, the difference between chaotic and integrable classical dynamics shows up already in the level density, instead of only in the level-level correlations. A chaotic billiard has a gap in the spectrum around the Fermi energy, while integrable billiards have a linearly vanishing density of states. The excitation gap E-gap corresponds to a time scale h/E-gap which is classical (h-independent, equal to the mean time tau(dwell) between Andreev reflections) if tau(dwell) is sufficiently large. There is a competing quantum time scale, the Ehrenfest time tau(E), which depends logarithmically on h. Two phenomenological theories provide a consistent description of the tau(E)-dependence of the gap, given qualitatively by E-gap similar or equal to min(h/tau(dwell), h/tau(E)). The analytical predictions have been tested by computer simulations but not yet experimentally.
引用
收藏
页码:131 / 174
页数:44
相关论文
共 50 条
  • [1] Graphene Andreev billiards
    Cserti, Jozsef
    Hagymasi, Imre
    Kormanyos, Andor
    PHYSICAL REVIEW B, 2009, 80 (07):
  • [2] Semiclassics of Andreev billiards
    Engl, T.
    Kuipers, J.
    Berkolaiko, G.
    Petitjean, C.
    Waltner, D.
    Richter, K.
    MESOSCOPIC PHYSICS IN COMPLEX MEDIA, 2010,
  • [3] CHAOS IN ANDREEV BILLIARDS
    KOSZTIN, I
    MASLOV, DL
    GOLDBART, PM
    PHYSICAL REVIEW LETTERS, 1995, 75 (09) : 1735 - 1738
  • [4] Chaos in Andreev billiards
    Phys Rev Lett, 9 (1735):
  • [5] Chladni figures in Andreev billiards
    F. Libisch
    S. Rotter
    J. Burgdörfer
    The European Physical Journal Special Topics, 2007, 145 : 245 - 254
  • [6] Chladni figures in Andreev billiards
    Libisch, F.
    Rotter, S.
    Burgdoerfer, J.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 145 (1): : 245 - 254
  • [7] Entanglement distribution statistic in Andreev billiards
    J. G. G. S. Ramos
    A. F. Macedo-Junior
    A. L. R. Barbosa
    The European Physical Journal B, 2017, 90
  • [8] Commensurability effects in Andreev antidot billiards
    Eroms, J
    Tolkiehn, M
    Weiss, D
    Rössler, U
    De Boeck, J
    Borghs, G
    EUROPHYSICS LETTERS, 2002, 58 (04): : 569 - 575
  • [9] Density of states of chaotic Andreev billiards
    Kuipers, Jack
    Engl, Thomas
    Berkolaiko, Gregory
    Petitjean, Cyril
    Waltner, Daniel
    Richter, Klaus
    PHYSICAL REVIEW B, 2011, 83 (19):
  • [10] Entanglement distribution statistic in Andreev billiards
    Ramos, J. G. G. S.
    Macedo-Junior, A. F.
    Barbosa, A. L. R.
    EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (11):