Billiards in an ellipse

被引:0
|
作者
Flatto, L
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The billiard problem was introduced by G. Birkhoff. For elliptic tables, the problem is integrable. Using notions from Riemann surfaces, we derive the invariant measure associated with the problem. The measure is used to obtain a complete description of billiard trajectories and their associated dynamics.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 50 条
  • [21] Perfect billiards
    Shasha, DE
    SCIENTIFIC AMERICAN, 2002, 287 (05) : 97 - 97
  • [22] Molecular billiards
    Fogarty, DP
    Kandel, SA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U700 - U700
  • [23] INTEGRABLE BILLIARDS
    ABDRAHMANOV, AM
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1990, (06): : 28 - 33
  • [24] Track Billiards
    Leonid A. Bunimovich
    Gianluigi Del Magno
    Communications in Mathematical Physics, 2009, 288 : 699 - 713
  • [25] Degenerate billiards
    Sergey V. Bolotin
    Proceedings of the Steklov Institute of Mathematics, 2016, 295 : 45 - 62
  • [26] Billiards with Bombs
    Newkirk, Edward
    EXPERIMENTAL MATHEMATICS, 2016, 25 (02) : 194 - 212
  • [27] ON RAMIFYING BILLIARDS
    CHIGUR, II
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1991, (01): : 68 - 72
  • [28] ELECTROMAGNETIC BILLIARDS
    BOLCATO, R
    ETAY, J
    FAUTRELLE, Y
    MOFFATT, HK
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (07): : 1852 - 1853
  • [29] Microorganism billiards
    Spagnolie, Saverio E.
    Wahl, Colin
    Lukasik, Joseph
    Thiffeault, Jean-Luc
    PHYSICA D-NONLINEAR PHENOMENA, 2017, 341 : 33 - 44
  • [30] Chess Billiards
    Nogueira, Arnaldo
    Troubetzkoy, Serge
    MATHEMATICAL INTELLIGENCER, 2022, 44 (04): : 331 - 338