Billiards in an ellipse

被引:0
|
作者
Flatto, L
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The billiard problem was introduced by G. Birkhoff. For elliptic tables, the problem is integrable. Using notions from Riemann surfaces, we derive the invariant measure associated with the problem. The measure is used to obtain a complete description of billiard trajectories and their associated dynamics.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 50 条
  • [41] BILLIARDS IN POLYGONS
    BOLDRIGHINI, C
    KEANE, M
    MARCHETTI, F
    ANNALS OF PROBABILITY, 1978, 6 (04): : 532 - 540
  • [42] DUAL BILLIARDS
    TABACHNIKOV, S
    RUSSIAN MATHEMATICAL SURVEYS, 1993, 48 (06) : 81 - 109
  • [43] 'QUEEN OF THE BILLIARDS'
    LIEBERMAN, L
    HUDSON REVIEW, 1984, 37 (04): : 583 - 584
  • [44] Chess Billiards
    Arnaldo Nogueira
    Serge Troubetzkoy
    The Mathematical Intelligencer, 2022, 44 : 331 - 338
  • [45] QUANTUM BILLIARDS
    VONBAEYER, HC
    SCIENCES-NEW YORK, 1991, 31 (04): : 8 - 10
  • [46] BILLIARDS IN POLYGONS
    GUTKIN, E
    PHYSICA D, 1986, 19 (03): : 311 - 333
  • [47] Rashba billiards
    A. Csordás
    J. Cserti
    A. Pályi
    U. Zülicke
    The European Physical Journal B, 2006, 54 : 189 - 200
  • [48] Study of deflected mode of ellipse and ellipse weakened with crack
    Zirakashvili, Natela
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2017, 97 (08): : 932 - 945
  • [49] Localization in billiards
    Prosen, T
    NEW DIRECTIONS IN QUANTUM CHAOS, 2000, 143 : 473 - 509
  • [50] Degenerate Billiards
    Bolotin, Sergey V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 295 (01) : 45 - 62