Hyperbolic diffusion in chaotic systems

被引:1
|
作者
Borys, P. [1 ]
Grzywna, Z. J. [1 ]
Luczka, J. [2 ]
机构
[1] Silesian Tech Univ, Dept Phys Chem & Technol Polymers, Sect Phys Chem & Biophys, PL-44100 Gliwice, Poland
[2] Univ Silesia, Inst Phys, PL-40007 Katowice, Poland
来源
EUROPEAN PHYSICAL JOURNAL B | 2011年 / 83卷 / 02期
关键词
ANOMALOUS DIFFUSION; RANDOM-WALKS; TRANSPORT; EQUATIONS; DRIVEN; MODELS; ORIGIN; MARKOV;
D O I
10.1140/epjb/e2011-20162-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We consider a deterministic process described by a discrete one-dimensional chaotic map and study its diffusive-like properties. Starting with the corresponding Frobenius-Perron equation we derive an approximate evolution equation for the probability distribution which is a partial differential equation of a hyperbolic type. Consequently, the process is correlated, non-Markovian, non-Gaussian and the information propagates with a finite velocity. This is in clear contrast to conventional diffusion processes described by a standard parabolic diffusion equation with an infinite velocity of information propagation. Our approach allows for a more complete characterisation of diffusion dynamics of deterministic systems.
引用
收藏
页码:223 / 233
页数:11
相关论文
共 50 条
  • [1] Hyperbolic diffusion in chaotic systems
    P. Borys
    Z. J. Grzywna
    J. Łuczka
    The European Physical Journal B, 2011, 83
  • [2] Synchronization and desynchronization in quasi-hyperbolic chaotic systems
    Kapitaniak, T
    Wojewoda, J
    Brindley, J
    PHYSICS LETTERS A, 1996, 210 (4-5) : 283 - 289
  • [3] Synchronizition of Chaotic Systems Based on Fuzzy Hyperbolic Model
    Yang, Dongsheng
    Liu, Zhaobing
    Li, Aiping
    Meng, Ziyi
    IEEE CIRCUITS AND SYSTEMS INTERNATIONAL CONFERENCE ON TESTING AND DIAGNOSIS, 2009, : 550 - 553
  • [4] On the chaotic diffusion in multidimensional Hamiltonian systems
    P. M. Cincotta
    C. M. Giordano
    J. G. Martí
    C. Beaugé
    Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [5] On the chaotic diffusion in multidimensional Hamiltonian systems
    Cincotta, P. M.
    Giordano, C. M.
    Marti, J. G.
    Beauge, C.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (01):
  • [6] ANOMALOUS DIFFUSION IN INTERMITTENT CHAOTIC SYSTEMS
    GEISEL, T
    THOMAE, S
    PHYSICAL REVIEW LETTERS, 1984, 52 (22) : 1936 - 1939
  • [7] Diffusion phenomena for partially dissipative hyperbolic systems
    Wirth, Jens
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 303 - 310
  • [8] Diffusion phenomena for partially dissipative hyperbolic systems
    Wirth, Jens
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (02) : 666 - 677
  • [9] Stabilization of chaotic oscillations in systems with a hyperbolic-type attractor
    Loskutov, A. Yu.
    Popkova, A. V.
    JETP LETTERS, 2011, 94 (01) : 86 - 90
  • [10] Stabilization of chaotic oscillations in systems with a hyperbolic-type attractor
    A. Yu. Loskutov
    A. V. Popkova
    JETP Letters, 2011, 94 : 86 - 90