Hyperbolic diffusion in chaotic systems

被引:1
|
作者
Borys, P. [1 ]
Grzywna, Z. J. [1 ]
Luczka, J. [2 ]
机构
[1] Silesian Tech Univ, Dept Phys Chem & Technol Polymers, Sect Phys Chem & Biophys, PL-44100 Gliwice, Poland
[2] Univ Silesia, Inst Phys, PL-40007 Katowice, Poland
来源
EUROPEAN PHYSICAL JOURNAL B | 2011年 / 83卷 / 02期
关键词
ANOMALOUS DIFFUSION; RANDOM-WALKS; TRANSPORT; EQUATIONS; DRIVEN; MODELS; ORIGIN; MARKOV;
D O I
10.1140/epjb/e2011-20162-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We consider a deterministic process described by a discrete one-dimensional chaotic map and study its diffusive-like properties. Starting with the corresponding Frobenius-Perron equation we derive an approximate evolution equation for the probability distribution which is a partial differential equation of a hyperbolic type. Consequently, the process is correlated, non-Markovian, non-Gaussian and the information propagates with a finite velocity. This is in clear contrast to conventional diffusion processes described by a standard parabolic diffusion equation with an infinite velocity of information propagation. Our approach allows for a more complete characterisation of diffusion dynamics of deterministic systems.
引用
收藏
页码:223 / 233
页数:11
相关论文
共 50 条