Hyperbolic diffusion in chaotic systems

被引:1
|
作者
Borys, P. [1 ]
Grzywna, Z. J. [1 ]
Luczka, J. [2 ]
机构
[1] Silesian Tech Univ, Dept Phys Chem & Technol Polymers, Sect Phys Chem & Biophys, PL-44100 Gliwice, Poland
[2] Univ Silesia, Inst Phys, PL-40007 Katowice, Poland
来源
EUROPEAN PHYSICAL JOURNAL B | 2011年 / 83卷 / 02期
关键词
ANOMALOUS DIFFUSION; RANDOM-WALKS; TRANSPORT; EQUATIONS; DRIVEN; MODELS; ORIGIN; MARKOV;
D O I
10.1140/epjb/e2011-20162-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We consider a deterministic process described by a discrete one-dimensional chaotic map and study its diffusive-like properties. Starting with the corresponding Frobenius-Perron equation we derive an approximate evolution equation for the probability distribution which is a partial differential equation of a hyperbolic type. Consequently, the process is correlated, non-Markovian, non-Gaussian and the information propagates with a finite velocity. This is in clear contrast to conventional diffusion processes described by a standard parabolic diffusion equation with an infinite velocity of information propagation. Our approach allows for a more complete characterisation of diffusion dynamics of deterministic systems.
引用
收藏
页码:223 / 233
页数:11
相关论文
共 50 条
  • [31] CHAOTIC DIFFUSION
    HENON, M
    RECHERCHE, 1989, 20 (209): : 490 - 498
  • [32] Design of a Global Sliding Mode Controller Using Hyperbolic Functions for Nonlinear Systems and Application in Chaotic Systems
    Barhaghtalab, Mojtaba Hadi
    Mobayen, Saleh
    Merrikh-Bayat, Farshad
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1030 - 1034
  • [33] QUANTUM MODIFICATIONS OF CLASSICAL DIFFUSION IN COORDINATE SPACE FOR CHAOTIC SYSTEMS
    KOLOVSKY, AR
    MIYAZAKI, S
    GRAHAM, R
    PHYSICAL REVIEW E, 1994, 49 (01): : 70 - 78
  • [34] Chaotic mixing induced transitions in reaction-diffusion systems
    Neufeld, Z
    Haynes, PH
    Tél, T
    CHAOS, 2002, 12 (02) : 426 - 438
  • [35] Multi-component random model of diffusion in chaotic systems
    Robnik, M
    Prosen, T
    Dobnikar, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (07): : 1147 - 1162
  • [36] BIFURCATIONS AND LYAPUNOV EXPONENTS IN CHAOTIC REACTION-DIFFUSION SYSTEMS
    NAGASHIMA, H
    PHYSICA D-NONLINEAR PHENOMENA, 1995, 84 (1-2) : 303 - 309
  • [37] Towards anomalous diffusion with nonlinear interactions for Hamiltonian chaotic systems
    Yan, Shiwei
    Chen, Jiao
    Wang, Rong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (8-9) : 1786 - 1798
  • [38] Spatial chaotic structure of attractors of reaction-diffusion systems
    Afraimovich, V
    Babin, A
    Chow, SN
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (12) : 5031 - 5063
  • [39] Energy diffusion and absorption in chaotic systems with rapid periodic driving
    Hodson, Wade
    Jarzynski, Christopher
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [40] Spectral signatures of chaotic diffusion in systems with and without spatial order
    Dittrich, T
    Mehlig, B
    Schanz, H
    PHYSICA E, 2001, 9 (03): : 494 - 497