Hyperbolic diffusion in chaotic systems

被引:1
|
作者
Borys, P. [1 ]
Grzywna, Z. J. [1 ]
Luczka, J. [2 ]
机构
[1] Silesian Tech Univ, Dept Phys Chem & Technol Polymers, Sect Phys Chem & Biophys, PL-44100 Gliwice, Poland
[2] Univ Silesia, Inst Phys, PL-40007 Katowice, Poland
来源
EUROPEAN PHYSICAL JOURNAL B | 2011年 / 83卷 / 02期
关键词
ANOMALOUS DIFFUSION; RANDOM-WALKS; TRANSPORT; EQUATIONS; DRIVEN; MODELS; ORIGIN; MARKOV;
D O I
10.1140/epjb/e2011-20162-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We consider a deterministic process described by a discrete one-dimensional chaotic map and study its diffusive-like properties. Starting with the corresponding Frobenius-Perron equation we derive an approximate evolution equation for the probability distribution which is a partial differential equation of a hyperbolic type. Consequently, the process is correlated, non-Markovian, non-Gaussian and the information propagates with a finite velocity. This is in clear contrast to conventional diffusion processes described by a standard parabolic diffusion equation with an infinite velocity of information propagation. Our approach allows for a more complete characterisation of diffusion dynamics of deterministic systems.
引用
收藏
页码:223 / 233
页数:11
相关论文
共 50 条
  • [41] Synchronization of oscillators with hyperbolic chaotic phases
    Pikovsky, A. S.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2021, 29 (01): : 78 - 87
  • [42] SINGULAR-HYPERBOLIC ATTRACTORS ARE CHAOTIC
    Araujo, V.
    Pacifico, M. J.
    Pujals, E. R.
    Viana, M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (05) : 2431 - 2485
  • [43] Analysis of Two Novel Chaotic Systems with a Hyperbolic Sinusoidal Nonlinearity and their Adaptive Chaos Synchronization
    Vaidyanathan, Sundarapandian
    2013 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS AND NETWORKING TECHNOLOGIES (ICCCNT), 2013,
  • [44] COEXISTENCE OF HYPERBOLIC AND NONHYPERBOLIC CHAOTIC SCATTERING
    DROZDZ, S
    OKOLOWICZ, J
    SROKOWSKI, T
    PHYSICAL REVIEW E, 1993, 48 (06) : 4851 - 4854
  • [45] Hyperbolic Diffusion Equation
    Herrmann, Leopold
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009 (ICCMSE 2009), 2012, 1504 : 1337 - 1340
  • [46] Lag synchronization in uncertain autocatalytic reaction-diffusion chaotic systems
    Lue Ling
    Li Lyan
    ACTA PHYSICA SINICA, 2009, 58 (01) : 131 - 138
  • [47] Chaotic Diffusion in Delay Systems: Giant Enhancement by Time Lag Modulation
    Albers, Tony
    Mueller-Bender, David
    Hille, Lukas
    Radons, Guenter
    PHYSICAL REVIEW LETTERS, 2022, 128 (07)
  • [48] Correlated Brownian motion and diffusion of defects in spatially extended chaotic systems
    da Silva, S. T.
    Prado, T. L.
    Lopes, S. R.
    Viana, R. L.
    CHAOS, 2019, 29 (07)
  • [49] ACCELERATED DIFFUSION IN JOSEPHSON-JUNCTIONS AND RELATED CHAOTIC SYSTEMS - COMMENT
    SHLESINGER, MF
    KLAFTER, J
    PHYSICAL REVIEW LETTERS, 1985, 54 (23) : 2551 - 2551
  • [50] SELF-GENERATED DIFFUSION AND UNIVERSAL CRITICAL PROPERTIES IN CHAOTIC SYSTEMS
    GEISEL, T
    NIERWETBERG, J
    LECTURE NOTES IN PHYSICS, 1983, 179 : 93 - 114