Stabilization of chaotic oscillations in systems with a hyperbolic-type attractor

被引:1
|
作者
Loskutov, A. Yu. [1 ]
Popkova, A. V. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119992, Russia
关键词
PERTURBATIONS;
D O I
10.1134/S0021364011130121
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It has been shown that the chaotic dynamics of systems with nearly hyperbolic-type attractors can be stabilized by periodic parametric perturbations.
引用
收藏
页码:86 / 90
页数:5
相关论文
共 50 条
  • [1] Stabilization of chaotic oscillations in systems with a hyperbolic-type attractor
    A. Yu. Loskutov
    A. V. Popkova
    JETP Letters, 2011, 94 : 86 - 90
  • [2] The hyperbolic-type point process
    Demni, Nizar
    Lazag, Pierre
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2019, 71 (04) : 1137 - 1152
  • [3] HYPERBOLIC-TYPE DIFFERENTIAL-EQUATIONS
    LARIONOV, EA
    DIFFERENTIAL EQUATIONS, 1992, 28 (01) : 88 - 93
  • [4] Disturbance decoupling for hyperbolic-type distributed parameter systems with boundary control
    Luan X.-L.
    Li K.
    Liu F.
    Kongzhi yu Juece/Control and Decision, 2016, 31 (02): : 256 - 260
  • [5] Projective synchronization of a five-term hyperbolic-type chaotic system with fully uncertain parameters
    Yu Fei
    Wang Chun-Hua
    Hu Yan
    Yin Jin-Wen
    ACTA PHYSICA SINICA, 2012, 61 (06)
  • [6] Software package for solving hyperbolic-type equations
    Fortova S.V.
    Kraginskii L.M.
    Chikitkin A.V.
    Oparina E.I.
    Mathematical Models and Computer Simulations, 2013, 5 (6) : 607 - 616
  • [7] Hyperbolic-type inequalities on generalized metric spaces
    Lungu, Nicolaie
    CARPATHIAN JOURNAL OF MATHEMATICS, 2008, 24 (03) : 341 - 347
  • [8] The nonrelativistic oscillator strength of a hyperbolic-type potential
    H.Hassanabadi
    S.Zarrinkamar
    B.H.Yazarloo
    Chinese Physics B, 2013, (06) : 109 - 113
  • [9] One-point hyperbolic-type metrics
    Borovikova, Marina
    Ibragimov, Zair
    Bravo, Miguel Jimenez
    Luna, Alexandro
    INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (01): : 117 - 136
  • [10] The nonrelativistic oscillator strength of a hyperbolic-type potential
    Hassanabadi, H.
    Zarrinkamar, S.
    Yazarloo, B. H.
    CHINESE PHYSICS B, 2013, 22 (06)