Stabilization of chaotic oscillations in systems with a hyperbolic-type attractor

被引:1
|
作者
Loskutov, A. Yu. [1 ]
Popkova, A. V. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119992, Russia
关键词
PERTURBATIONS;
D O I
10.1134/S0021364011130121
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It has been shown that the chaotic dynamics of systems with nearly hyperbolic-type attractors can be stabilized by periodic parametric perturbations.
引用
收藏
页码:86 / 90
页数:5
相关论文
共 50 条
  • [41] Extremal properties of solutions of special classes of a hyperbolic-type equation
    Dolgopolov, V. M.
    Rodionova, I. N.
    MATHEMATICAL NOTES, 2012, 92 (3-4) : 490 - 496
  • [42] A LIGHT BEAM WAVEGUIDE USING HYPERBOLIC-TYPE GAS LENSES
    SUEMATSU, Y
    IGA, K
    ITO, S
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1966, MT14 (12) : 657 - +
  • [43] Integral Operators that Determine the Solution of an Iterated Hyperbolic-Type Equation
    I. M. Alexandrovich
    O. S. Bondar
    S. I. Lyashko
    N. I. Lyashko
    M. V.-S. Sydorov
    Cybernetics and Systems Analysis, 2020, 56 : 401 - 409
  • [44] Zeros of Polynomials Generated by a Rational Function with a Hyperbolic-Type Denominator
    Tamás Forgács
    Khang Tran
    Constructive Approximation, 2017, 46 : 617 - 643
  • [45] Oscillations vs. chaotic waves: Attractor selection in bistable stochastic reaction–diffusion systems
    M. Sieber
    H. Malchow
    The European Physical Journal Special Topics, 2010, 187 : 95 - 99
  • [46] BOUNDARY-VALUE-PROBLEMS FOR SYSTEMS OF DIFFERENTIAL-EQUATIONS WITH OPERATOR HYPERBOLIC-TYPE COEFFICIENTS
    MALOVICHKO, VA
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1989, (08): : 9 - 12
  • [47] Nonexistence Results for the Hyperbolic-Type Equations on Graded Lie Groups
    Aidyn Kassymov
    Niyaz Tokmagambetov
    Berikbol Torebek
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 4223 - 4243
  • [48] Integral Operators that Determine the Solution of an Iterated Hyperbolic-Type Equation
    Alexandrovich, I. M.
    Bondar, O. S.
    Lyashko, S., I
    Lyashko, N., I
    Sydorov, M. V-S
    CYBERNETICS AND SYSTEMS ANALYSIS, 2020, 56 (03) : 401 - 409
  • [49] Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations
    Lyashko, S. I.
    Sydorov, M. V. S.
    Lyashko, N. I.
    Alexandrovich, I. M.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2024, 60 (05) : 753 - 758
  • [50] Forced oscillations of solutions of systems of hyperbolic equations of neutral type
    Minchev, E
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 155 (02) : 427 - 438