A general Lagrangian approach for non-concave moral hazard problems

被引:15
|
作者
Araujo, A
Moreira, H
机构
[1] Inst Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
[2] Fundacao Getulio Vargas, BR-22253900 Rio De Janeiro, Brazil
[3] Pontificia Univ Catolica Rio de Janeiro, BR-24210900 Rio De Janeiro, Brazil
关键词
moral hazard; Lagrangian; first-order approach;
D O I
10.1016/S0304-4068(00)00055-0
中图分类号
F [经济];
学科分类号
02 ;
摘要
We establish a general Lagrangian for the moral hazard problem which generalizes the well known first-order approach (FOA). It requires that besides the multiplier of the first-order condition, there exist multipliers for the second-order condition and for the binding actions of the incentive compatibility constraint. Some examples show that our approach can be useful to treat the finite and infinite state space cases. One of the examples is solved by the second-order approach. We also compare our Lagrangian with Mirrlees'. (C) 2001 Elsevier science B.V. All rights reserved.
引用
收藏
页码:17 / 39
页数:23
相关论文
共 50 条
  • [41] OPTIMAL CONSUMPTION DYNAMICS WITH NON-CONCAVE HABIT-FORMING UTILITY
    ORPHANIDES, A
    ZERVOS, D
    ECONOMICS LETTERS, 1994, 44 (1-2) : 67 - 72
  • [42] An algorithm for computing non-concave multifractal spectra using the Sv spaces
    Kleyntssens, Thomas
    Esser, Celine
    Nicolay, Samuel
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 56 : 526 - 543
  • [43] Flexible Moral Hazard Problems
    Georgiadis, George
    Ravid, Doron
    Szentes, Balazs
    ECONOMETRICA, 2024, 92 (02) : 387 - 409
  • [44] Participation in moral hazard problems
    Roger, Guillaume
    GAMES AND ECONOMIC BEHAVIOR, 2016, 95 : 10 - 24
  • [45] MINIMIZATION OF CONVEX FUNCTIONALS INVOLVING NESTED MAXIMA - NON-CONCAVE DUALITY AND ALGORITHMS
    COHEN, G
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1982, 36 (03) : 335 - 365
  • [46] Non-concave fundamental diagrams and phase transitions in a stochastic traffic cellular automaton
    Maerivoet, S
    De Moor, B
    EUROPEAN PHYSICAL JOURNAL B, 2004, 42 (01): : 131 - 140
  • [47] Improved Portfolio Optimization with Non-convex and Non-concave Cost Using Genetic Algorithms
    Lu, Zhang
    Wang, Xiaoli
    PROCEEDINGS 2013 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCES, ELECTRIC ENGINEERING AND COMPUTER (MEC), 2013, : 2567 - 2570
  • [48] Non-concave fundamental diagrams and phase transitions in a stochastic traffic cellular automaton
    S. Maerivoet
    B. De Moor
    The European Physical Journal B - Condensed Matter and Complex Systems, 2004, 42 : 131 - 140
  • [49] Monotonic Optimization for Non-concave Power Control in Multiuser Multicarrier Network Systems
    Qian, Li Ping
    Jun , Ying
    IEEE INFOCOM 2009 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-5, 2009, : 172 - 180
  • [50] Constrained non-concave utility maximization: An application to life insurance contracts with guarantees
    Chen, An
    Hieber, Peter
    Thai Nguyen
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 273 (03) : 1119 - 1135