Non-concave fundamental diagrams and phase transitions in a stochastic traffic cellular automaton

被引:12
|
作者
Maerivoet, S [1 ]
De Moor, B [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, ESAT SCD, SISTA, B-3001 Heverlee, Belgium
来源
EUROPEAN PHYSICAL JOURNAL B | 2004年 / 42卷 / 01期
关键词
D O I
10.1140/epjb/e2004-00365-8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Within the class of stochastic cellular automata models of traffic flows, we look at the velocity dependent randomization variant (VDR-TCA) whose parameters take on a specific set of extreme values. These initial conditions lead us to the discovery of the emergence of four distinct phases. Studying the transitions between these phases, allows us to establish a rigorous classification based on their tempo-spatial behavioral characteristics. As a result from the system's complex dynamics, its flow-density relation exhibits a non-concave region in which forward propagating density waves are encountered. All four phases furthermore share the common property that moving vehicles can never increase their speed once the system has settled into an equilibrium.
引用
收藏
页码:131 / 140
页数:10
相关论文
共 50 条
  • [1] Non-concave fundamental diagrams and phase transitions in a stochastic traffic cellular automaton
    S. Maerivoet
    B. De Moor
    The European Physical Journal B - Condensed Matter and Complex Systems, 2004, 42 : 131 - 140
  • [2] Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow
    Tian, Junfang
    Li, Guangyu
    Treiber, Martin
    Jiang, Rui
    Jia, Ning
    Ma, Shoufeng
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2016, 93 : 560 - 575
  • [3] A cellular automaton with two phase transitions
    Szabó, G
    Borsos, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (13): : L189 - L192
  • [4] Phase diagrams of bone remodeling using a 3D stochastic cellular automaton
    Heller, Anna-Dorothea
    Valleriani, Angelo
    Cipitria, Amaia
    PLOS ONE, 2024, 19 (06):
  • [5] Stochastic cellular-automaton model for traffic flow
    Kanai, Masahiro
    Nishinari, Katsuhiro
    Tokihiro, Tetsuji
    CELLULAR AUTOMATA, PROCEEDINGS, 2006, 4173 : 538 - 547
  • [6] A simple stochastic cellular automaton for synchronized traffic flow
    Chmura, Thorsten
    Herz, Benedikt
    Knorr, Florian
    Pitz, Thomas
    Schreckenberg, Michael
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 405 : 332 - 337
  • [7] Phase transitions in an elementary probabilistic cellular automaton
    Petersen, NK
    Alstrom, P
    PHYSICA A, 1997, 235 (3-4): : 473 - 485
  • [8] A new stochastic cellular automaton model on traffic flow and its jamming phase transition
    Sakai, Satoshi
    Nishinari, Katsuhiro
    Iida, Shinji
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (50): : 15327 - 15339
  • [9] Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets
    Xu, Guanhao
    Gayah, Vikash V.
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2023, 173 : 203 - 227
  • [10] Traffic states and fundamental diagram in cellular automaton model of vehicular traffic controlled by signals
    Nagatani, Takashi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (08) : 1673 - 1681