Phase transitions in an elementary probabilistic cellular automaton

被引:5
|
作者
Petersen, NK
Alstrom, P
机构
[1] Niels Bohr Institute, DK-2100 Copenhagen
来源
PHYSICA A | 1997年 / 235卷 / 3-4期
关键词
D O I
10.1016/S0378-4371(96)00410-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cellular automata exhibit a large variety of dynamical behaviors, from fixed-point convergence and periodic motion to spatio-temporal chaos. By introducing probabilistic interactions, and regarding the asymptotic density Phi of non-quiescent cell states as an order parameter, phase transitions may be identified from a quiescent phase with Phi=0 to a chaotic phase with non-zero Phi. We consider an elementary one-dimensional probabilistic cellular automaton (PCA) with deterministic limits given by the quiescent rule 0, the rule 72 that evolves into a non-trivial fixed point, and the chaotic rules 18 and 90. Despite the simplicity of the rules, the PCA shows a surprising number of transition phenomena. We identify 'second-order' phase transitions from Phi=0 to Phi > 0 with static and dynamic exponents that differ from those of directed percolation. Moreover, we find that the non-trivial fixed-point rule 72 is a singular point in PCA space.
引用
收藏
页码:473 / 485
页数:13
相关论文
共 50 条
  • [1] Phase transitions in an elementary probabilistic cellular automaton with memory
    Alonso-Sanz, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 347 : 383 - 401
  • [2] Nature of phase transitions in a probabilistic cellular automaton with two absorbing states
    Bagnoli, F
    Boccara, N
    Rechtman, R
    PHYSICAL REVIEW E, 2001, 63 (04): : 461161 - 461169
  • [3] Opinion formation and phase transitions in a probabilistic cellular automaton with two absorbing states
    Bagnoli, F
    Franci, F
    Rechtman, R
    CELLULAR AUTOMATA, PROCEEDINGS, 2002, 2493 : 249 - 258
  • [4] A cellular automaton with two phase transitions
    Szabó, G
    Borsos, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (13): : L189 - L192
  • [5] PHASE-TRANSITIONS IN A PROBABILISTIC CELLULAR AUTOMATON - GROWTH-KINETICS AND CRITICAL PROPERTIES
    ALEXANDER, FJ
    EDREI, I
    GARRIDO, PL
    LEBOWITZ, JL
    JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (3-4) : 497 - 514
  • [6] Phase transitions in a cellular automaton model of a highway on-ramp
    Belitsky, Vladimir
    Maric, Nevena
    Schuetz, Gunter M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (37) : 11221 - 11243
  • [7] Phase diagram of a probabilistic cellular automaton with three-site interactions
    Atman, APF
    Dickman, R
    Moreira, JG
    PHYSICAL REVIEW E, 2003, 67 (01):
  • [8] Regional Synchronization of a Probabilistic Cellular Automaton
    Bagnoli, Franco
    Rechtman, Raul
    CELLULAR AUTOMATA (ACRI 2018), 2018, 11115 : 255 - 263
  • [9] Probabilistic cellular automaton for random walkers
    Nishidate, K
    Baba, M
    Chiba, H
    Ito, T
    Kodama, K
    Nishikawa, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (05) : 1352 - 1355
  • [10] A PROBABILISTIC CELLULAR-AUTOMATON FOR EVOLUTION
    RAJEWSKY, N
    SCHRECKENBERG, M
    JOURNAL DE PHYSIQUE I, 1995, 5 (09): : 1129 - 1134