A general Lagrangian approach for non-concave moral hazard problems

被引:15
|
作者
Araujo, A
Moreira, H
机构
[1] Inst Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
[2] Fundacao Getulio Vargas, BR-22253900 Rio De Janeiro, Brazil
[3] Pontificia Univ Catolica Rio de Janeiro, BR-24210900 Rio De Janeiro, Brazil
关键词
moral hazard; Lagrangian; first-order approach;
D O I
10.1016/S0304-4068(00)00055-0
中图分类号
F [经济];
学科分类号
02 ;
摘要
We establish a general Lagrangian for the moral hazard problem which generalizes the well known first-order approach (FOA). It requires that besides the multiplier of the first-order condition, there exist multipliers for the second-order condition and for the binding actions of the incentive compatibility constraint. Some examples show that our approach can be useful to treat the finite and infinite state space cases. One of the examples is solved by the second-order approach. We also compare our Lagrangian with Mirrlees'. (C) 2001 Elsevier science B.V. All rights reserved.
引用
收藏
页码:17 / 39
页数:23
相关论文
共 50 条
  • [31] Non-concave portfolio optimization with average value-at-risk
    Fangyuan Zhang
    Mathematics and Financial Economics, 2023, 17 : 203 - 237
  • [32] Non-concave portfolio optimization with average value-at-risk
    Zhang, Fangyuan
    MATHEMATICS AND FINANCIAL ECONOMICS, 2023, 17 (02) : 203 - 237
  • [33] Necessary and sufficient condition for non-concave network utility maximisation
    Wang, Jingyao
    Guo, Jinghua
    Wang, Qishao
    Duan, Zhisheng
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (02) : 319 - 327
  • [34] Interpolations for temperature distributions: a method for all non-concave polygons
    Malsch, EA
    Dasgupta, G
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2004, 41 (08) : 2165 - 2188
  • [36] Convergence of Non-Convex Non-Concave GANs Using Sinkhorn Divergence
    Adnan, Risman
    Saputra, Muchlisin Adi
    Fadlil, Junaidillah
    Ezerman, Martianus Frederic
    Iqbal, Muhamad
    Basaruddin, Tjan
    IEEE ACCESS, 2021, 9 : 67595 - 67609
  • [37] A multifractal formalism for non-concave and non-increasing spectra: The leaders profile method
    Esser, Celine
    Kleyntssens, Thomas
    Nicolay, Samuel
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, 43 (02) : 269 - 291
  • [38] Non-concave utility maximisation on the positive real axis in discrete time
    Laurence Carassus
    Miklós Rásonyi
    Andrea M. Rodrigues
    Mathematics and Financial Economics, 2015, 9 : 325 - 349
  • [39] Non-concave utility maximisation on the positive real axis in discrete time
    Carassus, Laurence
    Rasonyi, Miklos
    Rodrigues, Andrea M.
    MATHEMATICS AND FINANCIAL ECONOMICS, 2015, 9 (04) : 325 - 349
  • [40] Optimal Gradient-based Algorithms for Non-concave Bandit Optimization
    Huang, Baihe
    Huang, Kaixuan
    Kakade, Sham M.
    Lee, Jason D.
    Lei, Qi
    Wang, Runzhe
    Yang, Jiaqi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34