A general Lagrangian approach for non-concave moral hazard problems

被引:15
|
作者
Araujo, A
Moreira, H
机构
[1] Inst Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
[2] Fundacao Getulio Vargas, BR-22253900 Rio De Janeiro, Brazil
[3] Pontificia Univ Catolica Rio de Janeiro, BR-24210900 Rio De Janeiro, Brazil
关键词
moral hazard; Lagrangian; first-order approach;
D O I
10.1016/S0304-4068(00)00055-0
中图分类号
F [经济];
学科分类号
02 ;
摘要
We establish a general Lagrangian for the moral hazard problem which generalizes the well known first-order approach (FOA). It requires that besides the multiplier of the first-order condition, there exist multipliers for the second-order condition and for the binding actions of the incentive compatibility constraint. Some examples show that our approach can be useful to treat the finite and infinite state space cases. One of the examples is solved by the second-order approach. We also compare our Lagrangian with Mirrlees'. (C) 2001 Elsevier science B.V. All rights reserved.
引用
收藏
页码:17 / 39
页数:23
相关论文
共 50 条
  • [21] Efficient Resource Allocation with Non-Concave Objective Functions
    Arne Andersson
    Fredrik Ygge
    Computational Optimization and Applications, 2001, 20 : 281 - 298
  • [22] Applying the Leitmann-Stalford sufficient conditions to maximization control problems with non-concave Hamiltonian
    Feichtinger, G.
    Novak, A. J.
    Veliov, V. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (03) : 1017 - 1022
  • [23] A unifying approach to incentive compatibility in moral hazard problems
    Kirkegaard, Rene
    THEORETICAL ECONOMICS, 2017, 12 (01) : 25 - 51
  • [24] Sum of Non-Concave Utilities Maximization for MIMO Interference Systems
    Kong, Fook Wai
    Parpas, Panos
    Rustem, Berc
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2013, 12 (04) : 1744 - 1751
  • [25] Non-concave Expected Utility Optimization with Uncertain Time Horizon
    Christian Dehm
    Thai Nguyen
    Mitja Stadje
    Applied Mathematics & Optimization, 2023, 88
  • [26] A decentralized adaptive method with consensus step for non-convex non-concave min-max optimization problems
    Li, Meiwen
    Long, Xinyue
    Liu, Muhua
    Guo, Jing
    Zhao, Xuhui
    Wang, Lin
    Wu, Qingtao
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 276
  • [27] Structural analysis of optimal investment for firms with non-concave revenue
    Wagener, FOO
    JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION, 2005, 57 (04) : 474 - 489
  • [28] Non-concave Expected Utility Optimization with Uncertain Time Horizon
    Dehm, Christian
    Nguyen, Thai
    Stadje, Mitja
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (02):
  • [29] Mars landing feedback guidance for non-concave trajectory construction
    Gong, Youmin
    Guo, Yanning
    Li, Dongyu
    Ma, Guangfu
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 137
  • [30] GLOBAL SOLUTIONS FOR A NONCONVEX, NON-CONCAVE RAIL NETWORK MODEL
    LEBLANC, LJ
    MANAGEMENT SCIENCE, 1976, 23 (02) : 131 - 139