Graph deep learning detects contextual prognostic biomarkers from whole-slide images

被引:1
|
作者
Kwon, Sunghoon [1 ]
Park, Jeong Hwan [2 ]
机构
[1] Seoul Natl Univ, Seoul, South Korea
[2] Seoul Natl Univ, Coll Med, Seoul, South Korea
关键词
D O I
10.1038/s41551-022-00927-w
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Graph deep learning can be used to detect contextual pathological features within a complex tumour microenvironment. We have shown the use of graph deep learning for predicting the prognosis of patients with tumours, and use it to identify additional contextual prognostic biomarkers for pathologists.
引用
收藏
页码:1326 / 1327
页数:2
相关论文
共 50 条
  • [41] Deep Learning Facilitates Distinguishing Histologic Subtypes of Pulmonary Neuroendocrine Tumors on Digital Whole-Slide Images
    Ilie, Marius
    Benzaquen, Jonathan
    Tourniaire, Paul
    Heeke, Simon
    Ayache, Nicholas
    Delingette, Herve
    Long-Mira, Elodie
    Lassalle, Sandra
    Hamila, Marame
    Fayada, Julien
    Otto, Josiane
    Cohen, Charlotte
    Gomez-Caro, Abel
    Berthet, Jean-Philippe
    Marquette, Charles-Hugo
    Hofman, Veronique
    Bontoux, Christophe
    Hofman, Paul
    CANCERS, 2022, 14 (07)
  • [42] Deep learning for automatic diagnosis of gastric dysplasia using whole-slide histopathology images in endoscopic specimens
    Shi, Zhongyue
    Zhu, Chuang
    Zhang, Yu
    Wang, Yakun
    Hou, Weihua
    Li, Xue
    Lu, Jun
    Guo, Xinmeng
    Xu, Feng
    Jiang, Xingran
    Wang, Ying
    Liu, Jun
    Jin, Mulan
    GASTRIC CANCER, 2022, 25 (04) : 751 - 760
  • [43] Deep learning for automatic diagnosis of gastric dysplasia using whole-slide histopathology images in endoscopic specimens
    Zhongyue Shi
    Chuang Zhu
    Yu Zhang
    Yakun Wang
    Weihua Hou
    Xue Li
    Jun Lu
    Xinmeng Guo
    Feng Xu
    Xingran Jiang
    Ying Wang
    Jun Liu
    Mulan Jin
    Gastric Cancer, 2022, 25 : 751 - 760
  • [44] Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images
    Suzanne C. Wetstein
    Vincent M. T. de Jong
    Nikolas Stathonikos
    Mark Opdam
    Gwen M. H. E. Dackus
    Josien P. W. Pluim
    Paul J. van Diest
    Mitko Veta
    Scientific Reports, 12
  • [45] Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images
    Wetstein, Suzanne C.
    de Jong, Vincent M. T.
    Stathonikos, Nikolas
    Opdam, Mark
    Dackus, Gwen M. H. E.
    Pluim, Josien P. W.
    van Diest, Paul J.
    Veta, Mitko
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [46] The Immune Subtypes and Landscape of Gastric Cancer and to Predict Based on the Whole-Slide Images Using Deep Learning
    Chen, Yan
    Sun, Zepang
    Chen, Wanlan
    Liu, Changyan
    Chai, Ruoyang
    Ding, Jingjing
    Liu, Wen
    Feng, Xianzhen
    Zhou, Jun
    Shen, Xiaoyi
    Huang, Shan
    Xu, Zhongqing
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [47] Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images
    Celik, Yusuf
    Talo, Muhammed
    Yildirim, Ozal
    Karabatak, Murat
    Acharya, U. Rajendra
    PATTERN RECOGNITION LETTERS, 2020, 133 : 232 - 239
  • [48] Deep Learning With Conformal Prediction for Hierarchical Analysis of Large-Scale Whole-Slide Tissue Images
    Wieslander, Hakan
    Harrison, Philip J.
    Skogberg, Gabriel
    Jackson, Sonya
    Friden, Markus
    Karlsson, Johan
    Spjuth, Ola
    Wahlby, Carolina
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (02) : 371 - 380
  • [49] Predicting oncogene mutations of lung cancer using deep learning and histopathologic features on whole-slide images
    Tomita, Naofumi
    Tafe, Laura J.
    Suriawinata, Arief A.
    Tsongalis, Gregory J.
    Nasir-Moin, Mustafa
    Dragnev, Konstantin
    Hassanpour, Saeed
    TRANSLATIONAL ONCOLOGY, 2022, 24
  • [50] Deep learning-based tumor microenvironment analysis in colon adenocarcinoma histopathological whole-slide images
    Jiao, Yiping
    Li, Junhong
    Qian, Chenqi
    Fei, Shumin
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 204