Graph deep learning detects contextual prognostic biomarkers from whole-slide images

被引:1
|
作者
Kwon, Sunghoon [1 ]
Park, Jeong Hwan [2 ]
机构
[1] Seoul Natl Univ, Seoul, South Korea
[2] Seoul Natl Univ, Coll Med, Seoul, South Korea
关键词
D O I
10.1038/s41551-022-00927-w
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Graph deep learning can be used to detect contextual pathological features within a complex tumour microenvironment. We have shown the use of graph deep learning for predicting the prognosis of patients with tumours, and use it to identify additional contextual prognostic biomarkers for pathologists.
引用
收藏
页码:1326 / 1327
页数:2
相关论文
共 50 条
  • [31] A correlation graph attention network for classifying chromosomal instabilities from histopathology whole-slide images
    Liu, Liangliang
    Wang, Ying
    Chang, Jing
    Zhang, Pei
    Xiong, Shufeng
    Liu, Hebing
    ISCIENCE, 2023, 26 (06)
  • [32] A Deep Learning Model for Prostate Adenocarcinoma Classification in Needle Biopsy Whole-Slide Images Using Transfer Learning
    Tsuneki, Masayuki
    Abe, Makoto
    Kanavati, Fahdi
    DIAGNOSTICS, 2022, 12 (03)
  • [33] SGCL: Spatial guided contrastive learning on whole-slide pathological images
    Lin, Tiancheng
    Yu, Zhimiao
    Xu, Zengchao
    Hu, Hongyu
    Xu, Yi
    Chen, Chang-Wen
    MEDICAL IMAGE ANALYSIS, 2023, 89
  • [34] Spatiality Sensitive Learning for Cancer Metastasis Detection in Whole-Slide Images
    Zheng, Haixia
    Zhou, Yu
    Huang, Xin
    MATHEMATICS, 2022, 10 (15)
  • [35] EMBEDDING SPACE AUGMENTATION FOR WEAKLY SUPERVISED LEARNING IN WHOLE-SLIDE IMAGES
    Zaffar, Imaad
    Jaume, Guillaume
    Rajpoot, Nasir
    Mahmood, Faisal
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [36] Gigapixel Whole-Slide Images Classification Using Locally Supervised Learning
    Zhang, Jingwei
    Zhang, Xin
    Ma, Ke
    Gupta, Rajarsi
    Saltz, Joel
    Vakalopoulou, Maria
    Samaras, Dimitris
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 192 - 201
  • [37] Development and validation of a deep learning-based microsatellite instability predictor from prostate cancer whole-slide images
    Hu, Qiyuan
    Rizvi, Abbas A.
    Schau, Geoffery
    Ingale, Kshitij
    Muller, Yoni
    Baits, Rachel
    Pretzer, Sebastian
    BenTaieb, Aicha
    Gordhamer, Abigail
    Nussenzveig, Roberto
    Cole, Adam
    Leavitt, Matthew O.
    Jones, Ryan D.
    Joshi, Rohan P.
    Beaubier, Nike
    Stumpe, Martin C.
    Nagpal, Kunal
    NPJ PRECISION ONCOLOGY, 2024, 8 (01)
  • [38] Deep Learning-Based Breast Cancer Subtype Classification from Whole-Slide Images: Leveraging the BRACS Dataset
    Hernandez, Nerea
    Carrillo-Perez, Francisco
    Ortuno, Francisco M.
    Rojas, Ignacio
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT II, IWBBIO 2024, 2024, 14849 : 200 - 213
  • [39] Deep Learning-Based Classification of Uterine Cervical and Endometrial Cancer Subtypes from Whole-Slide Histopathology Images
    Song, JaeYen
    Im, Soyoung
    Lee, Sung Hak
    Jang, Hyun-Jong
    DIAGNOSTICS, 2022, 12 (11)
  • [40] A deep learning approach to assess the predominant tumor growth pattern in whole-slide images of lung adenocarcinoma
    Swiderska-Chadaj, Zaneta
    Nurzynska, Karolina
    Grala, Bartlomiej
    Grunberg, Katrien
    van Der Woude, Lieke
    Looijen-Salamon, Monika
    Walts, Ann E.
    Markiewicz, Tomasz
    Ciompi, Francesco
    Gertych, Arkadiusz
    MEDICAL IMAGING 2020: DIGITAL PATHOLOGY, 2021, 11320