Graph deep learning detects contextual prognostic biomarkers from whole-slide images

被引:1
|
作者
Kwon, Sunghoon [1 ]
Park, Jeong Hwan [2 ]
机构
[1] Seoul Natl Univ, Seoul, South Korea
[2] Seoul Natl Univ, Coll Med, Seoul, South Korea
关键词
D O I
10.1038/s41551-022-00927-w
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Graph deep learning can be used to detect contextual pathological features within a complex tumour microenvironment. We have shown the use of graph deep learning for predicting the prognosis of patients with tumours, and use it to identify additional contextual prognostic biomarkers for pathologists.
引用
收藏
页码:1326 / 1327
页数:2
相关论文
共 50 条
  • [21] Differentiable Zooming for Multiple Instance Learning on Whole-Slide Images
    Thandiackal, Kevin
    Chen, Boqi
    Pati, Pushpak
    Jaume, Guillaume
    Williamson, Drew F. K.
    Gabrani, Maria
    Goksel, Orcun
    COMPUTER VISION, ECCV 2022, PT XXI, 2022, 13681 : 699 - 715
  • [22] Deep learning system for lymph node quantification and metastatic cancer identification from whole-slide pathology images
    Hu, Yajie
    Su, Feng
    Dong, Kun
    Wang, Xinyu
    Zhao, Xinya
    Jiang, Yumeng
    Li, Jianming
    Ji, Jiafu
    Sun, Yu
    GASTRIC CANCER, 2021, 24 (04) : 868 - 877
  • [23] Deep learning system for lymph node quantification and metastatic cancer identification from whole-slide pathology images
    Yajie Hu
    Feng Su
    Kun Dong
    Xinyu Wang
    Xinya Zhao
    Yumeng Jiang
    Jianming Li
    Jiafu Ji
    Yu Sun
    Gastric Cancer, 2021, 24 : 868 - 877
  • [24] Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images
    Cheng, Na
    Ren, Yong
    Zhou, Jing
    Zhang, Yiwang
    Wang, Deyu
    Zhang, Xiaofang
    Chen, Bing
    Liu, Fang
    Lv, Jin
    Cao, Qinghua
    Chen, Sijin
    Du, Hong
    Hui, Dayang
    Weng, Zijin
    Liang, Qiong
    Su, Bojin
    Tang, Luying
    Han, Lanqing
    Chen, Jianning
    Shao, Chunkui
    GASTROENTEROLOGY, 2022, 162 (07) : 1948 - +
  • [25] DeepBatch: A hybrid deep learning model for interpretable diagnosis of breast cancer in whole-slide images
    Zeiser, Felipe Andre
    da Costa, Cristiano Andre
    Ramos, Gabriel de Oliveira
    Bohn, Henrique C.
    Santos, Ismael
    Roehe, Adriana Vial
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [26] Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images
    Farahani, Hossein
    Boschman, Jeffrey
    Farnell, David
    Darbandsari, Amirali
    Zhang, Allen
    Ahmadvand, Pouya
    Jones, Steven J. M.
    Huntsman, David
    Kobel, Martin
    Gilks, C. Blake
    Singh, Naveena
    Bashashati, Ali
    MODERN PATHOLOGY, 2022, 35 (12) : 1983 - 1990
  • [27] Reliable detection of the presence of pulmonary carcinoma on whole-slide images by a deep learning model.
    Toyokawa, Gouji
    Kanavati, Fahdi
    Momosaki, Seiya
    Rambeau, Michael
    Kozuma, Yuka
    Shoji, Fumihiro
    Yamazaki, Koji
    Takeo, Sadanori
    Iizuka, Osamu
    Tsuneki, Masayuki
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)
  • [28] Survival outcome prediction of breast carcinomas on whole-slide histopathology images using deep learning
    Paul, Julian
    Bossard, Celine
    Rynkiewicz, Joseph
    Molinie, Florence
    Salhi, Sanae
    Frenel, Jean-Sebastien
    Salhi, Yahia
    Chetritt, Jerome
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [29] Fast and scalable search of whole-slide images via self-supervised deep learning
    Chen, Chengkuan
    Lu, Ming Y.
    Williamson, Drew F. K.
    Chen, Tiffany Y.
    Schaumberg, Andrew J.
    Mahmood, Faisal
    NATURE BIOMEDICAL ENGINEERING, 2022, 6 (12) : 1420 - +
  • [30] Fast and scalable search of whole-slide images via self-supervised deep learning
    Chengkuan Chen
    Ming Y. Lu
    Drew F. K. Williamson
    Tiffany Y. Chen
    Andrew J. Schaumberg
    Faisal Mahmood
    Nature Biomedical Engineering, 2022, 6 : 1420 - 1434