Predicting oncogene mutations of lung cancer using deep learning and histopathologic features on whole-slide images

被引:15
|
作者
Tomita, Naofumi [1 ]
Tafe, Laura J. [2 ]
Suriawinata, Arief A. [2 ]
Tsongalis, Gregory J. [2 ]
Nasir-Moin, Mustafa [3 ]
Dragnev, Konstantin [4 ]
Hassanpour, Saeed [1 ,3 ,5 ,6 ]
机构
[1] Geisel Sch Med Dartmouth, Dept Biomed Data Sci, Hanover, NH 03755 USA
[2] Dartmouth Hitchcock Med Ctr, Dept Pathol & Lab Med, Lebanon, NH 03756 USA
[3] Dartmouth Coll, Dept Comp Sci, Hanover, NH 03755 USA
[4] Norris Cotton Canc Ctr, Hematol & Oncol Sect, Lebanon, NH 03756 USA
[5] Geisel Sch Med Dartmouth, Dept Epidemiol, Hanover, NH 03755 USA
[6] One Med Ctr Dr, HB 7261, Lebanon, NH 03756 USA
来源
TRANSLATIONAL ONCOLOGY | 2022年 / 24卷
关键词
D O I
10.1016/j.tranon.2022.101494
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Lung cancer is a leading cause of death in both men and women globally. The recent development of tumor molecular profiling has opened opportunities for targeted therapies for lung adenocarcinoma (LUAD) patients. However, the lack of access to molecular profiling or cost and turnaround time associated with it could hinder oncologists' willingness to order frequent molecular tests, limiting potential benefits from precision medicine. In this study, we developed a weakly supervised deep learning model for predicting somatic mutations of LUAD patients based on formalin-fixed paraffin-embedded (FFPE) whole-slide images (WSIs) using LUAD subtypes-related histological features and recent advances in computer vision. Our study was performed on a total of 747 hematoxylin and eosin (H & E) stained FFPE LUAD WSIs and the genetic mutation data of 232 patients who were treated at Dartmouth-Hitchcock Medical Center (DHMC). We developed our convolutional neural network-based models to analyze whole slides and predict five major genetic mutations, i.e., BRAF, EGFR, KRAS, STK11, and TP53. We additionally used 111 cases from the LUAD dataset of the CPTAC-3 study for external validation. Our model achieved an AUROC of 0.799 (95% CI: 0.686-0.904) and 0.686 (95% CI: 0.620-0.752) for predicting EGFR genetic mutations on the DHMC and CPTAC-3 test sets, respectively. Predicting TP53 genetic mutations also showed promising outcomes. Our results demonstrated that H & E stained FFPE LUAD whole slides could be utilized to predict oncogene mutations, such as EGFR, indicating that somatic mutations could present subtle morphological characteristics in histology slides, where deep learning-based feature extractors can learn such latent information.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Detection of Lung Cancer Lymph Node Metastases from Whole-Slide Histopathologic Images Using a Two-Step Deep Learning Approach
    Hoa Hoang Ngoc Pham
    Futakuchi, Mitsuru
    Bychkov, Andrey
    Furukawa, Tomoi
    Kuroda, Kishio
    Fukuoka, Junya
    AMERICAN JOURNAL OF PATHOLOGY, 2019, 189 (12): : 2428 - 2439
  • [2] Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images
    Cheng, Na
    Ren, Yong
    Zhou, Jing
    Zhang, Yiwang
    Wang, Deyu
    Zhang, Xiaofang
    Chen, Bing
    Liu, Fang
    Lv, Jin
    Cao, Qinghua
    Chen, Sijin
    Du, Hong
    Hui, Dayang
    Weng, Zijin
    Liang, Qiong
    Su, Bojin
    Tang, Luying
    Han, Lanqing
    Chen, Jianning
    Shao, Chunkui
    GASTROENTEROLOGY, 2022, 162 (07) : 1948 - +
  • [3] Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
    Syrykh, Charlotte
    Abreu, Arnaud
    Amara, Nadia
    Siegfried, Aurore
    Maisongrosse, Veronique
    Frenois, Francois X.
    Martin, Laurent
    Rossi, Cedric
    Laurent, Camille
    Brousset, Pierre
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [4] Prognostic Gene Expression Profiling in Lung Adenocarcinoma Using Deep Learning Applied to Whole-Slide Images
    Murchan, P.
    Baird, A. -M.
    Broin, P. O.
    Sheils, O.
    Finn, S.
    JOURNAL OF THORACIC ONCOLOGY, 2024, 19 (10) : S164 - S164
  • [5] SliDL: A toolbox for processing whole-slide images in deep learning
    Berman, Adam G.
    Orchard, William R.
    Gehrung, Marcel
    Markowetz, Florian
    PLOS ONE, 2023, 18 (08):
  • [6] Deep Learning Assisted Diagnosis of Onychomycosis on Whole-Slide Images
    Jansen, Philipp
    Creosteanu, Adelaida
    Matyas, Viktor
    Dilling, Amrei
    Pina, Ana
    Saggini, Andrea
    Schimming, Tobias
    Landsberg, Jennifer
    Burgdorf, Birte
    Giaquinta, Sylvia
    Mueller, Hansgeorg
    Emberger, Michael
    Rose, Christian
    Schmitz, Lutz
    Geraud, Cyrill
    Schadendorf, Dirk
    Schaller, Joerg
    Alber, Maximilian
    Klauschen, Frederick
    Griewank, Klaus G.
    JOURNAL OF FUNGI, 2022, 8 (09)
  • [7] Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
    Charlotte Syrykh
    Arnaud Abreu
    Nadia Amara
    Aurore Siegfried
    Véronique Maisongrosse
    François X. Frenois
    Laurent Martin
    Cédric Rossi
    Camille Laurent
    Pierre Brousset
    npj Digital Medicine, 3
  • [8] Deep learning quantified mucus-tumor ratio predicting survival of patients with colorectal cancer using whole-slide images
    Zhao, Ke
    Wu, Lin
    Huang, Yanqi
    Yao, Su
    Xu, Zeyan
    Lin, Huan
    Wang, Huihui
    Liang, Yanting
    Xu, Yao
    Chen, Xin
    Zhao, Minning
    Peng, Jiaming
    Huang, Yuli
    Liang, Changhong
    Li, Zhenhui
    Li, Yong
    Liu, Zaiyi
    PRECISION CLINICAL MEDICINE, 2021, 4 (01) : 17 - 24
  • [9] The Immune Subtypes and Landscape of Gastric Cancer and to Predict Based on the Whole-Slide Images Using Deep Learning
    Chen, Yan
    Sun, Zepang
    Chen, Wanlan
    Liu, Changyan
    Chai, Ruoyang
    Ding, Jingjing
    Liu, Wen
    Feng, Xianzhen
    Zhou, Jun
    Shen, Xiaoyi
    Huang, Shan
    Xu, Zhongqing
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [10] Diagnostic assessment of deep learning for melanocytic lesions using whole-slide pathological images
    Ba, Wei
    Wang, Rui
    Yin, Guang
    Song, Zhigang
    Zou, Jinyi
    Zhong, Cheng
    Yang, Jingrun
    Yu, Guanzhen
    Yang, Hongyu
    Zhang, Litao
    Li, Chengxin
    TRANSLATIONAL ONCOLOGY, 2021, 14 (09):