Computation of the bisection width for random d-regular graphs

被引:4
|
作者
Díaz, J
Serna, MJ
Wormald, NC
机构
[1] Univ Politecn Cataluna, Dept Llenguatges & Sistemas, E-08028 Barcelona, Spain
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
来源
关键词
D O I
10.1007/978-3-540-24698-5_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we provide an explicit way to compute asymptotically almost sure upper bounds on the bisection width of random d-regular graphs, for any value of d. We provide the bounds for 5 less than or equal to d less than or equal to 12. The upper bounds are obtained from the analysis of the performance of a randomized greedy algorithm to find bisections of d-regular graphs. We also give empirical values of the size of bisection found by the algorithm for some small values of d and compare it with numerical approximations of our theoretical bounds. Our analysis also gives asymptotic lower bounds for the size of the maximum bisection.
引用
收藏
页码:49 / 58
页数:10
相关论文
共 50 条
  • [21] The Replica Symmetric Solution for Potts Models on d-Regular Graphs
    Amir Dembo
    Andrea Montanari
    Allan Sly
    Nike Sun
    Communications in Mathematical Physics, 2014, 327 : 551 - 575
  • [22] The Replica Symmetric Solution for Potts Models on d-Regular Graphs
    Dembo, Amir
    Montanari, Andrea
    Sly, Allan
    Sun, Nike
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (02) : 551 - 575
  • [23] Percolating level sets of the adjacency eigenvectors of d-regular graphs
    Elon, Yehonatan
    Smilansky, Uzy
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (45)
  • [24] COUNTING IN TWO-SPIN MODELS ON d-REGULAR GRAPHS
    Sly, Allan
    Sun, Nike
    ANNALS OF PROBABILITY, 2014, 42 (06): : 2383 - 2416
  • [25] THE BISECTION WIDTH OF CUBIC GRAPHS
    CLARK, LH
    ENTRINGER, RC
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1989, 39 (03) : 389 - 396
  • [26] Bisection width of transposition graphs
    Stacho, L
    Vrt'o, I
    DISCRETE APPLIED MATHEMATICS, 1998, 84 (1-3) : 221 - 235
  • [27] The bisection width of grid graphs
    Papadimitriou, CH
    Sideri, M
    MATHEMATICAL SYSTEMS THEORY, 1996, 29 (02): : 97 - 110
  • [28] Upper bounds on the bisection width of 3-and 4-regular graphs
    Monien, B
    Preis, R
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2001, 2001, 2136 : 524 - 536
  • [29] Upper bounds on the bisection width of 3-and 4-regular graphs
    Monien, Burkhard
    Preis, Robert
    JOURNAL OF DISCRETE ALGORITHMS, 2006, 4 (03) : 475 - 498
  • [30] d-Regular Graphs of Acyclic Chromatic Index at Least d+2
    Basavaraju, Manu
    Chandran, L. Sunil
    Kummini, Manoj
    JOURNAL OF GRAPH THEORY, 2010, 63 (03) : 226 - 230