Computation of the bisection width for random d-regular graphs

被引:4
|
作者
Díaz, J
Serna, MJ
Wormald, NC
机构
[1] Univ Politecn Cataluna, Dept Llenguatges & Sistemas, E-08028 Barcelona, Spain
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
来源
关键词
D O I
10.1007/978-3-540-24698-5_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we provide an explicit way to compute asymptotically almost sure upper bounds on the bisection width of random d-regular graphs, for any value of d. We provide the bounds for 5 less than or equal to d less than or equal to 12. The upper bounds are obtained from the analysis of the performance of a randomized greedy algorithm to find bisections of d-regular graphs. We also give empirical values of the size of bisection found by the algorithm for some small values of d and compare it with numerical approximations of our theoretical bounds. Our analysis also gives asymptotic lower bounds for the size of the maximum bisection.
引用
收藏
页码:49 / 58
页数:10
相关论文
共 50 条
  • [41] The Maximum of the Maximum Rectilinear Crossing Numbers of d-regular Graphs of Order n
    Alpert, Matthew
    Feder, Elie
    Harborth, Heiko
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [42] Satisfiability threshold of the strictly d-regular random (3, s)-SAT problem
    Wang Yong-ping
    Xu Dao-yun
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 419 - 424
  • [43] On d-regular schematization of embedded paths
    Delling, Daniel
    Gemsa, Andreas
    Noellenburg, Martin
    Pajor, Thomas
    Rutter, Ignaz
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (03): : 381 - 406
  • [44] On d-Regular Schematization of Embedded Paths
    Gemsa, Andreas
    Noellenburg, Martin
    Pajor, Thomas
    Rutter, Ignaz
    SOFSEM 2011: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2011, 6543 : 260 - 271
  • [45] Regular honest graphs, isoperimetric numbers, and bisection of weighted graphs
    Alon, N
    Hamburger, P
    Kostochka, AV
    EUROPEAN JOURNAL OF COMBINATORICS, 1999, 20 (06) : 469 - 481
  • [46] Colorings of the d-regular infinite tree
    Hoory, S
    Linial, N
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (02) : 161 - 167
  • [47] A new NC-algorithm for finding a perfect matching in d-regular bipartite graphs when d is small
    Kulkarni, Raghav
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2006, 3998 : 308 - 319
  • [48] On the asymmetry of random regular graphs and random graphs
    Kim, JH
    Sudakov, B
    Vu, VH
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (3-4) : 216 - 224
  • [49] New spectral lower bounds on the bisection width of graphs
    Bezrukov, S
    Elsässer, R
    Monien, B
    Preis, R
    Tillich, JP
    THEORETICAL COMPUTER SCIENCE, 2004, 320 (2-3) : 155 - 174
  • [50] Properties of the satisfiability threshold of the strictly d-regular random (3,2s)-SAT problem
    Wang, Yongping
    Xu, Daoyun
    FRONTIERS OF COMPUTER SCIENCE, 2020, 14 (06)