Bisection width of transposition graphs

被引:14
|
作者
Stacho, L [1 ]
Vrt'o, I [1 ]
机构
[1] Slovak Acad Sci, Inst Informat, Bratislava 84000 4, Slovakia
关键词
D O I
10.1016/S0166-218X(98)00009-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove lower and upper bounds on bisection width of transposition graphs. This class of graphs contains several frequently studied interconnection networks including star graphs and hypercubes. In particular, we prove that the bisection width of the complete transposition graph is of order Theta(n.n!) which solves the open problem (R) 3.356 of Leighton's book [10] and determine an asymptotically exact value of bisection width of the star graph. The results have applications to VLSI layouts, cutwidth and crossing numbers of transposition graphs. We also study bandwidth of these graphs. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:221 / 235
页数:15
相关论文
共 50 条
  • [1] On the bisection width of the transposition network
    Kalpakis, K
    Yesha, Y
    NETWORKS, 1997, 29 (01) : 69 - 76
  • [2] THE BISECTION WIDTH OF CUBIC GRAPHS
    CLARK, LH
    ENTRINGER, RC
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1989, 39 (03) : 389 - 396
  • [3] The bisection width of grid graphs
    Papadimitriou, CH
    Sideri, M
    MATHEMATICAL SYSTEMS THEORY, 1996, 29 (02): : 97 - 110
  • [4] Note on the bisection width of cubic graphs
    Jobson, Adam S.
    Kezdy, Andre E.
    Lehel, Jeno
    DISCRETE APPLIED MATHEMATICS, 2020, 285 : 434 - 442
  • [5] New spectral lower bounds on the bisection width of graphs
    Bezrukov, S
    Elsässer, R
    Monien, B
    Preis, R
    Tillich, JP
    THEORETICAL COMPUTER SCIENCE, 2004, 320 (2-3) : 155 - 174
  • [6] Computation of the bisection width for random d-regular graphs
    Díaz, J
    Serna, MJ
    Wormald, NC
    LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 : 49 - 58
  • [7] Bounds on the bisection width for random d-regular graphs
    Diaz, J.
    Serna, M. J.
    Wormald, N. C.
    THEORETICAL COMPUTER SCIENCE, 2007, 382 (02) : 120 - 130
  • [8] A conjecture on the maximum cut and bisection width in random regular graphs
    Zdeborova, Lenka
    Boettcher, Stefan
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [9] Upper bounds on the bisection width of 3-and 4-regular graphs
    Monien, Burkhard
    Preis, Robert
    JOURNAL OF DISCRETE ALGORITHMS, 2006, 4 (03) : 475 - 498
  • [10] Upper bounds on the bisection width of 3-and 4-regular graphs
    Monien, B
    Preis, R
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2001, 2001, 2136 : 524 - 536