Computation of the bisection width for random d-regular graphs

被引:4
|
作者
Díaz, J
Serna, MJ
Wormald, NC
机构
[1] Univ Politecn Cataluna, Dept Llenguatges & Sistemas, E-08028 Barcelona, Spain
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
来源
关键词
D O I
10.1007/978-3-540-24698-5_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we provide an explicit way to compute asymptotically almost sure upper bounds on the bisection width of random d-regular graphs, for any value of d. We provide the bounds for 5 less than or equal to d less than or equal to 12. The upper bounds are obtained from the analysis of the performance of a randomized greedy algorithm to find bisections of d-regular graphs. We also give empirical values of the size of bisection found by the algorithm for some small values of d and compare it with numerical approximations of our theoretical bounds. Our analysis also gives asymptotic lower bounds for the size of the maximum bisection.
引用
收藏
页码:49 / 58
页数:10
相关论文
共 50 条
  • [1] Bounds on the bisection width for random d-regular graphs
    Diaz, J.
    Serna, M. J.
    Wormald, N. C.
    THEORETICAL COMPUTER SCIENCE, 2007, 382 (02) : 120 - 130
  • [2] On minimum vertex bisection of random d-regular graphs
    Diaz, Josep
    Diner, Oznur Yasar
    Serna, Maria
    Serra, Oriol
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2024, 144
  • [3] On the chromatic number of random d-regular graphs
    Kemkes, Graeme
    Perez-Gimenez, Xavier
    Wormald, Nicholas
    ADVANCES IN MATHEMATICS, 2010, 223 (01) : 300 - 328
  • [4] Cleaning Random d-Regular Graphs with Brooms
    Pralat, Pawel
    GRAPHS AND COMBINATORICS, 2011, 27 (04) : 567 - 584
  • [5] Cleaning Random d-Regular Graphs with Brooms
    Paweł Prałat
    Graphs and Combinatorics, 2011, 27 : 567 - 584
  • [6] Spectrum of random d-regular graphs up to the edge
    Huang, Jiaoyang
    Yau, Horng-Tzer
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (03) : 1635 - 1723
  • [7] A conjecture on the maximum cut and bisection width in random regular graphs
    Zdeborova, Lenka
    Boettcher, Stefan
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [8] INVERTIBILITY OF ADJACENCY MATRICES FOR RANDOM d-REGULAR GRAPHS
    Huang, Jiaoyang
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (18) : 3977 - 4032
  • [9] A NOTE ON THE SINGULARITY PROBABILITY OF RANDOM DIRECTED d-REGULAR GRAPHS
    Nguyen, Hoi H.
    Pan, Amanda
    arXiv, 2023,
  • [10] 3-star factors in random d-regular graphs
    Assiyatun, Hilda
    Wormald, Nicholas
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (08) : 1249 - 1262