Upper bounds on the bisection width of 3-and 4-regular graphs

被引:0
|
作者
Monien, B [1 ]
Preis, R [1 ]
机构
[1] Univ Gesamthsch Paderborn, Dept Math & Comp Sci, D-33098 Paderborn, Germany
关键词
graph partitioning; bisection width; regular graphs; local improvement;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We derive new upper bounds on the bisection width of graphs which have a regular vertex degree. We show that the bisection width of large 3-regular graphs with \V\ vertices is at most 1/6\V\. For the bisection width of large 4-regular graphs we show an upper 6 bound of 2/5\V\.
引用
收藏
页码:524 / 536
页数:13
相关论文
共 50 条
  • [1] Upper bounds on the bisection width of 3-and 4-regular graphs
    Monien, Burkhard
    Preis, Robert
    JOURNAL OF DISCRETE ALGORITHMS, 2006, 4 (03) : 475 - 498
  • [2] Bounds on the max and min bisection of random cubic and random 4-regular graphs
    Díaz, J
    Do, N
    Serna, MJ
    Wormald, NC
    THEORETICAL COMPUTER SCIENCE, 2003, 307 (03) : 531 - 547
  • [3] Maximum independent sets in 3-and 4-regular Hamiltonian graphs
    Fleischner, Herbert
    Sabidussi, Gert
    Sarvanov, Vladimir I.
    DISCRETE MATHEMATICS, 2010, 310 (20) : 2742 - 2749
  • [4] Bounds on the bisection width for random d-regular graphs
    Diaz, J.
    Serna, M. J.
    Wormald, N. C.
    THEORETICAL COMPUTER SCIENCE, 2007, 382 (02) : 120 - 130
  • [5] Lower bounds for the maximum genus of 4-regular graphs
    Zhou, Ding
    Hao, Rongxia
    He, Weili
    TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (04) : 530 - 537
  • [6] On Petrie cycle and Petrie tour partitions of 3-and 4-regular plane graphs
    He, Xin
    Zhang, Huaming
    Han, Yijie
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2022, 32 (02) : 240 - 256
  • [7] 3-REGULAR PARTS OF 4-REGULAR GRAPHS
    TASHKINOV, VA
    MATHEMATICAL NOTES, 1984, 36 (1-2) : 612 - 623
  • [8] 3-REGULAR SUBGRAPHS OF 4-REGULAR GRAPHS
    CHVATAL, V
    FLEISCHNER, H
    SHEEHAN, J
    THOMASSEN, C
    JOURNAL OF GRAPH THEORY, 1979, 3 (04) : 371 - 386
  • [9] Domination in 4-Regular Graphs with Girth 3
    Mohanapriya, N.
    Kumar, S. Vimal
    Vivin, J. Vernold
    Venkatachalam, M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2015, 85 (02) : 259 - 264
  • [10] Domination in 4-Regular Graphs with Girth 3
    N. Mohanapriya
    S. Vimal Kumar
    J. Vernold Vivin
    M. Venkatachalam
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2015, 85 : 259 - 264