Study of finite periodic structures using the generalized Mie theory

被引:4
|
作者
Oyhenart, L.
Vigneras, V.
机构
[1] CNRS, Lab Phys Interact Ondes Matiere PIOM, UMR 5501, F-33607 Pessac, France
[2] CNRS, Inst Rech XLIM, UMR 6172, F-87060 Limoges, France
来源
关键词
ELECTROMAGNETIC SCATTERING; SPHERES; MATRIX; WAVES;
D O I
10.1051/epjap:2007088
中图分类号
O59 [应用物理学];
学科分类号
摘要
The generalized Mie theory, also known as the multiple-scattering theory, is an analytical method for solving the scattered field by a collection of spherical scatterers. This is the fastest, most reliable method when the wavelength is close to the structure's dimensions. It is applicable to frequency selective surfaces and is the only method for analyzing finite photonic crystals with a large size. We used simplified structures to compare this method with other techniques.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
  • [41] Vibration analysis of finite periodic structures
    Petyt, M.
    Wei, J.
    Structural Dynamics - EURODYN 2005, Vols 1-3, 2005, : 77 - 83
  • [42] Generalized FVDAM Theory for Periodic Materials Undergoing Finite Deformations-Part II: Results
    Cavalcante, Marcio A. A.
    Pindera, Marek-Jerzy
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2014, 81 (02):
  • [43] Generalized FVDAM Theory for Periodic Materials Undergoing Finite Deformations-Part I: Framework
    Cavalcante, Marcio A. A.
    Pindera, Marek-Jerzy
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2014, 81 (02):
  • [44] Bessel-Gauss beams in the generalized Lorenz-Mie theory using three remodeling techniques
    Valdivia, Nereida L.
    Votto, Luiz F. M.
    Gouesbet, Gerard
    Wang, Jiajie
    Ambrosio, Leonardo A.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 256
  • [45] Generalized Lorenz-Mie theory for infinitely long elliptical cylinders
    Gouesbet, G
    Mees, L
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (06): : 1333 - 1341
  • [46] Semantic Web-based System for Light Scattering Using the Generalized Lorenz-Mie Theory
    Candido, Paulo H., V
    da Silva-Santos, Carlos H.
    Votto, Luiz F.
    Ambrosio, Leonardo A.
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 3217 - 3224
  • [47] The structure of generalized Lorenz-Mie theory for elliptical infinite cylinders
    Gouesbet, G
    Mees, L
    Gréhan, G
    Ren, KF
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 1999, 16 (01) : 3 - 10
  • [48] Prediction of reverse radiation pressure by generalized Lorenz-Mie theory
    Ren, KF
    Grehan, G
    Gouesbet, G
    APPLIED OPTICS, 1996, 35 (15): : 2702 - 2710
  • [49] Generalized Lorenz-Mie theory for infinitely long elliptical cylinders
    Gouesbet, G.
    Mees, L.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1999, 16 (06): : 1333 - 1341
  • [50] Generalized Lorenz-Mie theory of complex source vortex beams
    Berskys, Justas
    Orlov, Sergej
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,