Study of finite periodic structures using the generalized Mie theory

被引:4
|
作者
Oyhenart, L.
Vigneras, V.
机构
[1] CNRS, Lab Phys Interact Ondes Matiere PIOM, UMR 5501, F-33607 Pessac, France
[2] CNRS, Inst Rech XLIM, UMR 6172, F-87060 Limoges, France
来源
关键词
ELECTROMAGNETIC SCATTERING; SPHERES; MATRIX; WAVES;
D O I
10.1051/epjap:2007088
中图分类号
O59 [应用物理学];
学科分类号
摘要
The generalized Mie theory, also known as the multiple-scattering theory, is an analytical method for solving the scattered field by a collection of spherical scatterers. This is the fastest, most reliable method when the wavelength is close to the structure's dimensions. It is applicable to frequency selective surfaces and is the only method for analyzing finite photonic crystals with a large size. We used simplified structures to compare this method with other techniques.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
  • [21] Finite differencing of periodic structures
    Chen, JC
    Fan, S
    Mekis, A
    Kurland, I
    Villeneuve, PR
    Li, K
    Haus, HA
    Joannopoulos, JD
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES V, 1997, 2994 : 275 - 286
  • [22] Integral localized approximation in generalized Lorenz-Mie theory
    Ren, KF
    Gouesbet, G
    Grehan, G
    APPLIED OPTICS, 1998, 37 (19): : 4218 - 4225
  • [23] Generalized Lorentz Mie Theory of reversal of optical trapping force
    Devi, Anita
    De, Arkin K.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [24] COMPUTATIONS OF THE GN COEFFICIENTS IN THE GENERALIZED LORENZ-MIE THEORY USING 3 DIFFERENT METHODS
    GOUESBET, G
    GREHAN, G
    MAHEU, B
    APPLIED OPTICS, 1988, 27 (23): : 4874 - 4883
  • [25] Revisiting nonlinear optical trapping of a single nanoparticle using generalized Lorentz-Mie theory
    Devi, Anita
    Sikdar, Bhaswardeep
    De, Arijit K.
    PHYSICAL REVIEW A, 2022, 105 (05)
  • [26] SYMMETRY-RELATIONS IN GENERALIZED LORENZ-MIE THEORY
    REN, KF
    GREHAN, G
    GOUESBET, G
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (06): : 1812 - 1817
  • [27] Generalized Lorenz-Mie theory for assemblies of spheres and aggregates
    Gouesbet, G
    Grehan, G
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 1999, 1 (06): : 706 - 712
  • [28] Asymptotic quantum elastic generalized Lorenz-Mie theory
    Gouesbet, G.
    OPTICS COMMUNICATIONS, 2006, 266 (02) : 704 - 709
  • [29] Asymptotic quantum inelastic generalized Lorenz-Mie theory
    Gouesbet, G.
    OPTICS COMMUNICATIONS, 2007, 278 (01) : 215 - 220
  • [30] Integral localized approximation in generalized Lorenz-Mie theory
    Universite et Inst Natl des Sciences, Appliques de Rouen, Mont-Saint-Aignan, France
    Appl Opt, 19 (4218-4225):