Study of finite periodic structures using the generalized Mie theory

被引:4
|
作者
Oyhenart, L.
Vigneras, V.
机构
[1] CNRS, Lab Phys Interact Ondes Matiere PIOM, UMR 5501, F-33607 Pessac, France
[2] CNRS, Inst Rech XLIM, UMR 6172, F-87060 Limoges, France
来源
关键词
ELECTROMAGNETIC SCATTERING; SPHERES; MATRIX; WAVES;
D O I
10.1051/epjap:2007088
中图分类号
O59 [应用物理学];
学科分类号
摘要
The generalized Mie theory, also known as the multiple-scattering theory, is an analytical method for solving the scattered field by a collection of spherical scatterers. This is the fastest, most reliable method when the wavelength is close to the structure's dimensions. It is applicable to frequency selective surfaces and is the only method for analyzing finite photonic crystals with a large size. We used simplified structures to compare this method with other techniques.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
  • [31] Energy analysis of continuum elastic structures by the generalized finite-volume theory
    Marcelo Vitor Oliveira Araujo
    Eduardo Nobre Lages
    Márcio André Araújo Cavalcante
    Acta Mechanica, 2021, 232 : 4625 - 4643
  • [32] Energy analysis of continuum elastic structures by the generalized finite-volume theory
    Cavalcante, Márcio André Araújo (marcio.cavalcante@ceca.ufal.br), 1600, Springer (232):
  • [33] Energy analysis of continuum elastic structures by the generalized finite-volume theory
    Oliveira Araujo, Marcelo Vitor
    Lages, Eduardo Nobre
    Araujo Cavalcante, Marcio Andre
    ACTA MECHANICA, 2021, 232 (11) : 4625 - 4643
  • [34] FAST CAPACITANCE EXTRACTION FOR FINITE PLANAR PERIODIC STRUCTURES USING THE GENERALIZED FORWARD-BACKWARD AND NOVEL SPECTRAL ACCELERATION METHOD
    Lertsirimit, C.
    Torrungrueng, D.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2009, 96 : 251 - 266
  • [35] Homogenization of periodic materials with viscoelastic phases using the generalized FVDAM theory
    Cavalcante, Marcio A. A.
    Marques, Severino P. C.
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 87 : 43 - 53
  • [36] Edge finite element method for periodic structures using random meshes
    Ouchetto, Ouail
    Essakhi, Brahim
    Jai-Andaloussi, Said
    Zaamoun, Saad
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022, 32 (06) : 2830 - 2848
  • [37] The theory of the formation of periodic structures
    Hedges, ES
    KOLLOID-ZEITSCHRIFT, 1930, 52 (02): : 219 - 222
  • [38] Vibroacoustic analysis of periodic structures using a wave and finite element method
    Yang, Yi
    Mace, Brian R.
    Kingan, Michael J.
    JOURNAL OF SOUND AND VIBRATION, 2019, 457 : 333 - 353
  • [39] New in the Theory of Periodic Structures
    Zinher, Yana
    Adamenko, Yuliia
    Nelin, Evgeniy
    2019 IEEE 39TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2019, : 169 - 172
  • [40] GENERALIZED PERIODIC PROBLEM OF THE THEORY OF ELASTICITY
    BURYSHKIN, ML
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1978, 42 (03): : 545 - 555