Generalized Lorenz-Mie theory of complex source vortex beams

被引:0
|
作者
Berskys, Justas [1 ]
Orlov, Sergej [1 ]
机构
[1] Ctr Phys Sci & Technol, Sauletekio Av 3, Vilnius, Lithuania
关键词
D O I
10.1109/CLEO/Europe-EQEC52157.2021.9542712
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Generalized Lorenz-Mie theory and applications
    Lock, James A.
    Gouesbet, Gerard
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (11): : 800 - 807
  • [2] GENERALIZED LORENZ-MIE THEORY AND APPLICATIONS
    GOUESBET, G
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 1994, 11 (01) : 22 - 34
  • [3] Generalized Lorenz-Mie theory of photonic wheels
    Orlov, S.
    Berskys, J.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 261
  • [4] Symmetry relations in generalized Lorenz-Mie theory
    Ren, K.F.
    Grehan, G.
    Gouesbet, G.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1994, 11 (06): : 1812 - 1817
  • [5] An approach for a polychromatic generalized Lorenz-Mie theory
    Ambrosio, Leonardo A.
    de Sarro, Jhonas O.
    Gouesbet, Gerard
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2024, 312
  • [6] Towards photophoresis with the generalized Lorenz-Mie theory
    Ambrosio, Leonardo Andre
    Wang, Jiajie
    Gouesbet, Gerard
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 288
  • [7] Scattering of Lommel beams by homogenous spherical particle in generalized Lorenz-Mie theory
    Chafiq, A.
    Belafhal, A.
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (02)
  • [8] SYMMETRY-RELATIONS IN GENERALIZED LORENZ-MIE THEORY
    REN, KF
    GREHAN, G
    GOUESBET, G
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (06): : 1812 - 1817
  • [9] Generalized Lorenz-Mie theory for assemblies of spheres and aggregates
    Gouesbet, G
    Grehan, G
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 1999, 1 (06): : 706 - 712
  • [10] Integral localized approximation in generalized Lorenz-Mie theory
    Universite et Inst Natl des Sciences, Appliques de Rouen, Mont-Saint-Aignan, France
    Appl Opt, 19 (4218-4225):