The Crouzeix-Raviart Fe on nonmatching grids with an approximate mortar condition

被引:7
|
作者
Rahman, Talal
Bjorstad, Petter [1 ]
Xu, Xuejun [2 ]
机构
[1] Univ Bergen, Dept Math, N-5008 Bergen, Norway
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100080, Peoples R China
关键词
Crouzeix-Raviart finite element; nonmatching grids; mortar condition; additive Schwarz;
D O I
10.1137/060663593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new approximate mortar condition is proposed for the lowest order Crouzeix-Raviart finite element on nonmatching grids, which uses only the nodal values on the interface for the calculation of the mortar projection. This approach allows for improved and more flexible algorithms compared to those for the standard mortar condition where nodal values in the interior of a subdomain, those closest to a mortar side of the subdomain, are also required in the calculation.
引用
收藏
页码:496 / 516
页数:21
相关论文
共 50 条
  • [41] Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem
    冯民富
    祁瑞生
    朱瑞
    鞠炳焘
    AppliedMathematicsandMechanics(EnglishEdition), 2010, 31 (03) : 393 - 404
  • [42] EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS
    Carstensen, Carsten
    Gedicke, Joscha
    Rim, Donsub
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (04) : 337 - 353
  • [43] MsFEM à la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems
    Claude LE BRIS
    Frédéric LEGOLL
    Alexei LOZINSKI
    ChineseAnnalsofMathematics(SeriesB), 2013, 34 (01) : 113 - 138
  • [44] Crouzeix-Raviart Finite Element Approximation for the Parabolic Obstacle Problem
    Gudi, Thirupathi
    Majumder, Papri
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (02) : 273 - 292
  • [45] A QUASI-OPTIMAL CROUZEIX-RAVIART DISCRETIZATION OF THE STOKES EQUATIONS
    Verfuerth, Ruediger
    Zanotti, Pietro
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1082 - 1099
  • [46] Robust AMLI methods for parabolic Crouzeix-Raviart FEM systems
    Boyanova, Petia
    Margenov, Svetozar
    Neytcheva, Maya
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (02) : 380 - 390
  • [47] Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem
    Burman, E
    Hansbo, P
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (05) : 986 - 997
  • [48] A NONCONFORMING CROUZEIX-RAVIART TYPE FINITE ELEMENT ON POLYGONAL MESHES
    Wang, Yanqiu
    MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 237 - 271
  • [49] MsFEM à la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems
    Claude Le Bris
    Frédéric Legoll
    Alexei Lozinski
    Chinese Annals of Mathematics, Series B, 2013, 34 : 113 - 138
  • [50] Surface Crouzeix-Raviart element for the Laplace-Beltrami equation
    Guo, Hailong
    NUMERISCHE MATHEMATIK, 2020, 144 (03) : 527 - 551