The Crouzeix-Raviart Fe on nonmatching grids with an approximate mortar condition

被引:7
|
作者
Rahman, Talal
Bjorstad, Petter [1 ]
Xu, Xuejun [2 ]
机构
[1] Univ Bergen, Dept Math, N-5008 Bergen, Norway
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100080, Peoples R China
关键词
Crouzeix-Raviart finite element; nonmatching grids; mortar condition; additive Schwarz;
D O I
10.1137/060663593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new approximate mortar condition is proposed for the lowest order Crouzeix-Raviart finite element on nonmatching grids, which uses only the nodal values on the interface for the calculation of the mortar projection. This approach allows for improved and more flexible algorithms compared to those for the standard mortar condition where nodal values in the interior of a subdomain, those closest to a mortar side of the subdomain, are also required in the calculation.
引用
收藏
页码:496 / 516
页数:21
相关论文
共 50 条
  • [1] ASYMPTOTIC EXPANSIONS OF EIGENVALUES BY BOTH THE CROUZEIX-RAVIART AND ENRICHED CROUZEIX-RAVIART ELEMENTS
    Hu, Jun
    Ma, Limin
    MATHEMATICS OF COMPUTATION, 2022, 91 (333) : 75 - 109
  • [2] A 3D Crouzeix-Raviart mortar finite element
    Leszek Marcinkowski
    Talal Rahman
    Jan Valdman
    Computing, 2009, 86 : 313 - 330
  • [3] On an additive Schwarz preconditioner for the Crouzeix-Raviart mortar finite element
    Rahman, T
    Xu, XJ
    Hoppe, RHW
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 335 - 342
  • [4] A 3D Crouzeix-Raviart mortar finite element
    Marcinkowski, Leszek
    Rahman, Talal
    Valdman, Jan
    COMPUTING, 2009, 86 (04) : 313 - 330
  • [5] Crouzeix-Raviart boundary elements
    Heuer, Norbert
    Sayas, Francisco-Javier
    NUMERISCHE MATHEMATIK, 2009, 112 (03) : 381 - 401
  • [6] The mortar finite volume method with the Crouzeix-Raviart element for elliptic problems
    Bi, CJ
    Li, LK
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (1-2) : 15 - 31
  • [7] A SIMPLE NECESSARY AND SUFFICIENT CONDITION FOR THE ENRICHMENT OF THE CROUZEIX-RAVIART ELEMENT
    Bachar, Mostafa
    Guessab, Allal
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 378 - 393
  • [8] Gradient Recovery for the Crouzeix-Raviart Element
    Guo, Hailong
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 64 (02) : 456 - 476
  • [9] ASYMPTOTICALLY EXACT A POSTERIORI ERROR ESTIMATES OF EIGENVALUES BY THE CROUZEIX-RAVIART ELEMENT AND ENRICHED CROUZEIX-RAVIART ELEMENT
    Hu, Jun
    Ma, Limin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : A797 - A821
  • [10] Mortar finite volume element method with Crouzeix-Raviart element for parabolic problems
    Bi, Chunjia
    Chen, Wenbin
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (11) : 1642 - 1657