The Crouzeix-Raviart Fe on nonmatching grids with an approximate mortar condition

被引:7
|
作者
Rahman, Talal
Bjorstad, Petter [1 ]
Xu, Xuejun [2 ]
机构
[1] Univ Bergen, Dept Math, N-5008 Bergen, Norway
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100080, Peoples R China
关键词
Crouzeix-Raviart finite element; nonmatching grids; mortar condition; additive Schwarz;
D O I
10.1137/060663593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new approximate mortar condition is proposed for the lowest order Crouzeix-Raviart finite element on nonmatching grids, which uses only the nodal values on the interface for the calculation of the mortar projection. This approach allows for improved and more flexible algorithms compared to those for the standard mortar condition where nodal values in the interior of a subdomain, those closest to a mortar side of the subdomain, are also required in the calculation.
引用
收藏
页码:496 / 516
页数:21
相关论文
共 50 条
  • [21] Discontinuous Galerkin and the Crouzeix-Raviart element: Application to elasticity
    Hansbo, P
    Larson, MG
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (01): : 63 - 72
  • [22] A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization
    Chunmei Wang
    Applications of Mathematics, 2014, 59 : 653 - 672
  • [23] A preconditioner for the FETI-DP method for mortar-type Crouzeix-Raviart element discretization
    Wang, Chunmei
    APPLICATIONS OF MATHEMATICS, 2014, 59 (06) : 653 - 672
  • [24] Superconvergent Cluster Recovery Method for the Crouzeix-Raviart Element
    Zhang, Yidan
    Chen, Yaoyao
    Huang, Yunqing
    Yi, Nianyu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (02): : 508 - 526
  • [25] Additive Schwarz methods for the Crouzeix-Raviart mortar finite element for elliptic problems with discontinuous coefficients
    Talal Rahman
    Xuejun Xu
    Ronald Hoppe
    Numerische Mathematik, 2005, 101 : 551 - 572
  • [26] Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements
    Hu, Jun
    Ma, Limin
    Ma, Rui
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (04)
  • [27] PENALTY METHOD WITH CROUZEIX-RAVIART APPROXIMATION FOR THE STOKES EQUATIONS UNDER SLIP BOUNDARY CONDITION
    Kashiwabara, Takahito
    Oikawa, Issei
    Zhou, Guanyu
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (03): : 869 - 891
  • [28] Optimal superconvergence analysis for the Crouzeix-Raviart and the Morley elements
    Jun Hu
    Limin Ma
    Rui Ma
    Advances in Computational Mathematics, 2021, 47
  • [29] ADAPTIVE NONCONFORMING CROUZEIX-RAVIART FEM FOR EIGENVALUE PROBLEMS
    Carstensen, Carsten
    Gallistl, Dietmar
    Schedensack, Mira
    MATHEMATICS OF COMPUTATION, 2015, 84 (293) : 1061 - 1087
  • [30] Crouzeix-Raviart Approximation of the Total Variation on Simplicial Meshes
    Chambolle, Antonin
    Pock, Thomas
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (6-7) : 872 - 899