EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS

被引:42
|
作者
Carstensen, Carsten [1 ,2 ]
Gedicke, Joscha [1 ]
Rim, Donsub [2 ,3 ]
机构
[1] Humboldt Univ, Inst Matemat, D-10099 Berlin, Germany
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul 120749, South Korea
[3] Yonsei Univ, Yonsei Sch Business, Seoul 120749, South Korea
基金
新加坡国家研究基金会;
关键词
Error estimates; Conforming; Nonconforming; Mixed; Finite element method; ANGLE CONDITION; INTERPOLATION; BOUNDS;
D O I
10.4208/jcm.1108-m3677
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The elementary analysis of this paper presents explicit expressions of the constants in the a priori error estimates for the lowest-order Courant, Crouzeix-Raviart nonconforming and Raviart-Thomas mixed finite element methods in the Poisson model problem. The three constants and their dependences on some maximal angle in the triangulation are indeed all comparable and allow accurate a priori error control.
引用
收藏
页码:337 / 353
页数:17
相关论文
共 50 条