EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS

被引:42
|
作者
Carstensen, Carsten [1 ,2 ]
Gedicke, Joscha [1 ]
Rim, Donsub [2 ,3 ]
机构
[1] Humboldt Univ, Inst Matemat, D-10099 Berlin, Germany
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul 120749, South Korea
[3] Yonsei Univ, Yonsei Sch Business, Seoul 120749, South Korea
基金
新加坡国家研究基金会;
关键词
Error estimates; Conforming; Nonconforming; Mixed; Finite element method; ANGLE CONDITION; INTERPOLATION; BOUNDS;
D O I
10.4208/jcm.1108-m3677
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The elementary analysis of this paper presents explicit expressions of the constants in the a priori error estimates for the lowest-order Courant, Crouzeix-Raviart nonconforming and Raviart-Thomas mixed finite element methods in the Poisson model problem. The three constants and their dependences on some maximal angle in the triangulation are indeed all comparable and allow accurate a priori error control.
引用
收藏
页码:337 / 353
页数:17
相关论文
共 50 条
  • [31] A Posteriori Error Estimates of Lowest Order Raviart-Thomas Mixed Finite Element Methods for Bilinear Optimal Control Problems
    Lu, Zuliang
    Chen, Yanping
    Zheng, Weishan
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2012, 2 (02) : 108 - 125
  • [32] Additive Schwarz methods for the Crouzeix-Raviart mortar finite element for elliptic problems with discontinuous coefficients
    Rahman, T
    Xu, XJ
    Hoppe, R
    NUMERISCHE MATHEMATIK, 2005, 101 (03) : 551 - 572
  • [33] The finite volume method based on the Crouzeix-Raviart element for a fracture model
    Chen, Shuangshuang
    Li, Xiaoli
    Rui, Hongxing
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (05) : 1904 - 1927
  • [34] The mortar finite volume method with the Crouzeix-Raviart element for elliptic problems
    Bi, CJ
    Li, LK
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (1-2) : 15 - 31
  • [35] Discontinuous Galerkin and the Crouzeix-Raviart element: Application to elasticity
    Hansbo, P
    Larson, MG
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (01): : 63 - 72
  • [36] Finite volume method based on the Crouzeix-Raviart element for the Stokes equation
    Li Da-ming
    Journal of Zhejiang University-SCIENCE A, 2001, 2 (2): : 165 - 169
  • [37] Schwarz Methods for a Crouzeix-Raviart Finite Volume Discretization of Elliptic Problems
    Marcinkowski, Leszek
    Loneland, Atle
    Rahman, Talal
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXII, 2016, 104 : 595 - 602
  • [38] Superconvergent Cluster Recovery Method for the Crouzeix-Raviart Element
    Zhang, Yidan
    Chen, Yaoyao
    Huang, Yunqing
    Yi, Nianyu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (02): : 508 - 526
  • [39] Guaranteed Energy Error Estimators for a Modified Robust Crouzeix-Raviart Stokes Element
    Linke, A.
    Merdon, C.
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 64 (02) : 541 - 558
  • [40] Crouzeix–Raviart and Raviart–Thomas finite-element error analysis on anisotropic meshes violating the maximum-angle condition
    Hiroki Ishizaka
    Kenta Kobayashi
    Takuya Tsuchiya
    Japan Journal of Industrial and Applied Mathematics, 2021, 38 : 645 - 675